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ABSTRACT. Posets containing no subposet isomorphic to the disjoint sums of chains
3 + 1 and/or 2 + 2 are known to have many special properties [4], [5], [8], [9]. How-
ever," while posets free of 2 +2 and posets free of both 2 + 2 and 3+ 1 may be
characterized as interyal orders, no such characterization is known for posets free of
only 3 + 1. We give here a characterization of (3 + l)-free posets in terms of their
anti-adjacency matrices. Using results about totaUy positive matrices, we show
that this characterization leads to a simple proof that the chain polynomial of a
(3 + l)-free poset has only real zeros.

RESUME. Les ensembles partiellemeat ordonnes qui ne contiennent pas un sous-
ensemble partieUement ordonne isomorphique a 3 + 1 et/ou 2+2 possedent pro-
pdetesinteressantes [4], [5], [8], [9]. Cependaat, alors que les ensembles sans
2 + 2, et les ensembles sans 2+2 et 3 +1 possedent une caracterisation par or-
dres d'intervalle, aucune caracterisation analogue pour les ensembles seulement sans
3+1 n'est connue. Nous presentons une caracterisation basee sur leurs matrices
anti-adjacentes. En utilisant les resultats sur les matrices totallement positives,
nous montrons que cette caracterisation produit une preuve simple que Ie polyn6me
des chaines d'un ensemble partieUement ordonne sans 3 +1 ne possede que des
zeros reelles.

1. INTRODUCTION

Fishburn [3] introduced the term interval order to refer to posets having no induced
subposet isomorphic to the disjoint sum 2+2 of two two-element chains. Such a
posetP may be thought of as a set of closed intervals of the form [a,, &,], ordered
by"defimng~la,, &z] <P"[a,, ^-] whenever b, < a,-. If, in addition, P has no induced

subposet isomorphicto^he disjoint sum 3+ 1 of a three-element chain^and a sii
efement, then P may be represented as a set of constant size intervals. The converses
of both'of these statments are also true. That is, the interval representations are
in fact characterizations of the posets. An analogous characterization for posets free
only of 3 + 1 remains an open problem.
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FIGURE 2.1

Characterization of (3 + l)-free posets is an interesting problem, because several
results and conjectures about posets require avoidance only of 3 + 1. For instance,
Stanley's generalization of the chromatic polynomial [7 is known to be s-positive
for the incomparability graphs of (3 + l)-free posets [5], and is conjectured to be
e-positive for these graphs as well [7, 9, 10 . Further, the chain polynomial of a
(3 + l)-free poset has only real zeros. (See 9] and Corollary 4. 1).

The main theorem of this paper characterizes a (3 + l)-free poset in terms of its
anti-adjacency matrix (Section 3). From this characterization, reality of the zeros of
the chain polynomial follows as an easy corollary (Section 4). We finish with some
related open questions.

2. PRELIMINARIES

We denote by a + b the poset which is the disjoint sum of an a-element chain
and a ^-element chain. We say that a poset is (a + b)-/ree if it contains no induced
subposet isomorphic to a + b. In Figure 2. 1, the poset on the left is 3 + 1. The poset
on the right is not (3 + l)-free because the subposet induced by elements {2, 3, 4, 6}
is isomorphic to 3 + 1.

Let P be a poset on n elements with order relation <p. We say that a bijectve
function ^: P ->. {1,. .. n} is a natural labelling of P if
(2. 1) x<py=^ <l){x) < <f>{y),
where < is the usual relation on integers.

Given any labelling of P, we define its anti-adjacency matrix A = [a^j by

(2. 2) Oij =
0 i<pj
1 otherwise.
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FIGURE 2.2

Let P be a poset with anti-adjacency matrix A, and consider the matrbc B = A2,
which has the following combinatorial interpretation. If we let G be the directed
graph whose adjacency matrbc is A, then B == A2 counts the number of paths of
length two between each pair of vertices in G. That is, 6^ is the number of paths of
length two in G from ito k. Note that edges exist in G between each pair ofvertices:
(i, j) is a directed edge if i >p j, and an undirected edge if i and j are incomparable
or identical.

Using the graph Gr, we can show that certain properties of a poset P may be read
directly from its squared anti-adjacency matrix B.

Observation 2.1. Suppose that i, j, k are three distinct elements of P forming a
chain: i <p j <p k. Then either bik =0, or P is not (3 + l)-/ree.

Proof. If there is no path of length two in G from i\, o k, then &;jfc = 0. If there is such
a path, it must be of the form (i, x, k) where x is incomparable to i and k. Thus, the
poset induced by {i, j, k, x} is isomorphic to 3 + 1. D
Observation 2.2. Let i, j, k, and I be elements of P, not necessarily distinct.

1. Ifbik> ba, then there is an element x <p I, such that x ^. p k, and x ~^p i.
8. Ifbik > bjk, then there is an element j <p y, such that y ~^p i, and y ^. p k.

Proof. (1) If &IA > &y, then there are more paths of length two in G from i to k
than from i to I. It follows that there is a vertex x such that {i, x, k) is a path in G
and (z, a;, Q is not. In particular, the edge (I, x) is directed, and the edges (i, x) and
(x, k) are not directed backward. Let us call such a vertex x a (k, I)-advantage for i,
imagining that it "helps" i get to k, but not to I. (2) is similar. D

Note that in Figure 2. 2, the vertex a; is a (k, ̂ -advantage for i
Lemma 2. 3. Ifbik - bu > bjk - bj i, then either i has a (k, I)-advantage that j doesn't

have, or j has an {I, k)-advantage that i doesn't have. In particular, either there is
an element x such that j <p x <p I or there is an element y such that i <py <p k.
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Proof. Noting that b.k - bu is the number of (k, Z)-advajitages for i minus the number
rf (1, A;)-advantages for ̂ , one proves the first statement of the lemma immediately.
Then, recalling that there is au edge between each pair of vertices in G, we see that
axi element 2; is a (^, Q-advantage for i and not for j if and only if there are directed
edges (l, x) and (x, j) in G. ' . - ----- --

Note that m Figure 2.2, x is not a (A;, Q-advantage for j, although it is a (A, 0-
advantage for i.

Observa.twn2A. JFor any matrix B, denote by row(z) and column(z) the ith row
and column of B. The following two conditions on a poset P are equivalent.

1. There is some natural labelling of P such that the squared anti-adjacency matrix
B weakly increases to the southwest, i. e. 6,+ij ̂  by and b^^ ̂  6y.

2. In every natural labelling of P the rows and columns of B corresponding to any
pair of indices i and j satisfy one of the following pairs of vector inequalities.
(2-3) row(z) ̂  row(j) anri column^) ^ column(j)
(2. 4) row(t) ̂  row(j) anc; column(z) ̂  column(j")

Proof. The first statement simply says that we may sort the columns of B in weakly
decreasing order while simultaneously sorting the rows in weakly mcreasing ordeT.
Clearly this is possible if and only if the conditions in the second statement are
true. -Q

In_ examining the anti-adjacency matrix of a poset, we will use some facts about
infinite Toeplitz matrices and totally positive matrices (see [1, 2]).
Definition 2. 1. Given a sequence (cn)n>o, we define the infinite Toeplitz matrix C
by

(2. 5) C == (c, -,-) =

'co 0
Cl Co
C2 Ci

0

0

Co

where z, j ^Oand Cn= 0 ifn < 0.

A real matrix finite or infinite, is called totally positive (or sometimes totally non-
negatwe) if each kx k minor is nonnegative. An important property of a finite totally
positive matrbc is that it has only nonnegative real eigenvalues (see'[2, Corollary 6. 6]).
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Example 2.2. In particular, we will consider the infinite Toeplitz matrix correspond-
ing to the positive integers,

n oo- . .
[21 0- ..
1321 . . .

(2. 6) c=

and submatrices of this matrix. In this case, it is not hard to show that C is totally
positive.

3. MAIN RESULT

Using the three observations and lemma from the previous section we will char-
acterize (3 + l)-free posets by relating their anti-adjacency matrices to the infinite
Toeplitz matrix of Example 2. 2.
Theorem 3.1. A poset P is (3 + l)-/ree ?/ and only if there is a natural labelling of
P such that its squared anti-adjacency matrix is a submatrix of the infinite Toeplitz
matrix C,

0 . . .
0 . . .
1 . . .

(3. 1) c=

0

1

2

with row and column repetition allowed.

Precisely, row (column) repetition is the replacement of any row (column) of C7 by
any "number of copies of'itself, without reordering any other rows or columns. We
allow the repetition of any number of rows and columns.

First we prove that the anti-adjacency matrices of (3 + l)-free posets have the two
defining properties of submatrices of (7, allowing row and column repetition.
Proposition 3.2. IfP is a (3+ l)-free poset then there is a natural labelling of P
such that the entries of its squared anti-adjacency matrix B weakly increase toward
the southwest.

Proof. Assume that for each natural labelling of P, B does not weakly increase toward
the southwest. Then, one of the pairs of vector inequalities in Observation 2.4 fails
to hold. We consider two cases for a given natural labelling.
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Case 1: Suppose that all columns and rows of B are comparable as vectors. We
then may assume that for some i and j we have the following incorrect comparison,
where the vectors in question are not identically equal.
(3. 2) row(t) ̂  row(j) and column(t') ^ column^').
Then for some elements k, I, of P we have

(3. 3) bki > bkj and ba > bji.
Since bki > 6^, there must be an element x ^ j such that x <p j, x ^. pi, and
x ~^p k. Similarly, since ba > bj i, there must be an element y^j such that ^ <p y,
y ^-p i, and y ^p 1. In particular, either 2; is incomparable to i, or 2; >p i, and
either y is incomparable to i, or y <p i. By the transitivity of P, both x and ?/ must
be incomparable to i, and by Obseryation 2. 1, the subposet induced by {i, j, x, y} is
isomorphic to 3 + 1.

Case 2: Suppose that some pair of columns (or rows) is not comparable as a pair of
vectors. In this case, we may assume without loss of generality that there is a2 x 2
submatrix

(3. 4) \bik ^1
[bjk 6,J

with bik > bu aad bjk < bji. Therefore, i has a (/i;J)-advantage x, and j has an
(/, A;)-advantage y. In particular, we cannot have k >p x, x >p i, I >p y, or y >p j.
Since

(3. 5) bzk -ba>0> bj k - bj i,

we may apply Lemma 23 Suppose first that x is not a (k, Q-advantage for j. Then,
3 ^p x <.p ?" By transitivity; both j and I must be incomparable to y. Thus, the
sybposet induced by {l, x, j, y} is isomorphic to 3 + 1. Supposing that y is not an
(1, fc)-advantage for i we see by the same argument that the subposet induced by
{k, y, i, x} is isomorphic to 3 + 1. --- -^
Proposition 3.3. Let P be a (3 + l)-/ree poset, naturally labelled so that its squared
anti-adjacency matrix B weakly increases toward the southwest. Let i < j and k < I.
Then the 2x2 submatrix

(3. 6) r^ ^i
[bjk b^

satisfies one of the following two conditions:
W bik - ba = bj k - bji
(ii) ba = 0 and bj k - bji > bik
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Proof. Suppose that condition {z) is not satisfied.

Case 1: (bik - &i; > bjk - bji). Applying Lemma 2. 3 to this inequality, we suppose
first that i has a {k, ̂ -advantage x that j doesn't have. Thus, j <p x <p I. By
Observation 2. 1, we have that bji = 0, implying that bii = 0, since B weakly increases
to the southwest. Thus, 6^ > bjk, a contradiction. We conclude that j has an (Z, k)-
advantage y that i doesn't have. Thus, i <p y <p k. Applying Observation 2. 1, we
have that 6^ = 0, implying that &;. ; = 0. Thus, 0 > bjk - bji, again a contradiction.
Case 2: (6^ - &y < bjk - bji). As in the previous case, we apply Lemma 2. 3 to this
inequality. First let us suppose that i has an {I, fe)-advantage x that j doesn't have.
Then, j <p x <p k. By Observation 2. 1, bjk = 0, implying that all four numbers
are zero, a contradiction. We conclude that that j has a {k, ̂ -advantage y that i
doesn't have. This implies that i <p y <p I, and that bu = 0. Thus condition (zi) is
satisfied. D

Since the properties stated in Proposition 3.2 and Proposition 3.3 characterize
submatrices of the infinite Toeplitz matrix C in Example 2.2, allowing row and column
repetition, we have proven one direction of the theorem. Now we show that the
only posets whose anti-adjacency matrices have the desired form are those which are
(3 + l)-free.

Proposition 3.4. Let P be a naturally lablelled poset containing 3+1 as an induced
subposet, and let B be its squared anti-adjacency matrix. Then B is not a submatrix
of the infinite Toeplitz matrix C of Example 2. 2.

Proof. Consider the poset (3=3+1. Let us label the elements 1 <Q 2<Q 3 and 4.
The squared anti-adjacency matrix of Q is

B=

2112
3213
4324
4324

(3. 7)

Note that the submatrix

(3. 8)
weakly increases to the southwest, but does not satisfy

(3. 9) bn - &i3 = hi - hs-

Let us attempt to adjoin elements to Q to satisfy equation (3. 9). To increase the
difference 611 - 613 without increasing the difference 631 - bs3, we need a new element
3; to be a (l, 3)-advantage for 1 and not a (l, 3)-advantage for 3. This is clearly
impossible. Similarly, we cannot decrease the second difference without decreasing
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the first. Therefore there are no elements we can adjoin to Q so that B will be a
submatrbc of the infinite Toeplitz matrix C. ~ ' ~' Q

Combinining the last three propositions, we now have the desired equivalence.

4. CHAIN POLYNOMIALS AND OPEN QUESTIONS

Definition 4. 1. We define the chain polynomial of a finite poset P by

(4J) /p(^)=^^,
i=0

where a is the number of t-element chains in P, and r is the maximum cardinalitv of
a chain in P. We define co = 1.

If A is the anti-adjacency matrix of P then the chain polynomial is given by
(4-2) fp(x)=det(I+xA).
(See [8]. ) From this formula we see that fp{x) has only real zeros if and only if A has
only real eigenvalues. The following result now follows easily from Theorem 31
Corollary 4.1. Let P bea(3+ l)-free poset. Then the chain polynomial fp(x) has
only real zeros.

Proof Since B = A2 is a submatrbc of a totally positive matrbc, it is totally positive,
and therefore has only nonnegative real eigenvalues (see Section 2). It follows that A
has only real eigenvalues, and that fp(x) has only real zeros. / ~ ~-~ D

The converse of Corollary 4. 1 is not true, for there are many posets containing 3+1
as an induced subposet, whose chain polynomials have only real zeros. An important
open problem is to determine which posets have this property. In particular, we have
the following conjecture, due to Stanley and Neggers.
Conjecture 4.2. Let J{Q} be a finite distributive lattice. Then the chain polynomial
fj (Q)(x} has only real zeros.

By a result of Simion [6], the conjecture holds for the special case of products of
chains. The question of whether the conjecture holds for the larger class^of modular
lattices is open as well. It would be interesting to apply formula (4. 2) to either of the
open questions or to the special case.

5. ACKNOWLEDGMENTS

I would like to thank Richard Stanley for inspiration and for many helpful sugges-
tions.

548



REFERENCES

[1] M. Aissen, I. J.Schoenberg, and A. Whitney. On generating functions of totally positive se-
quences, J. Analyse Math. 2; 93-103 (1952).

[2] T. Ando. Totally positive matrices, Linear Algebra Its APPL 90; 165-219 (1987).
[3] P. C. Fishburn. Intransitive indifference with unequal indifference intervals, J. Math. Psychol.

7; 144-149 (1970).
[4] P. C. Fishburn. Interval Graphs and Interval Orders, Wiley, New York (1985).
[5] V. Gasharov. Incomparability graphs of (3 + l)-free posets are s-positive, Discrete Math 157;

211-215 (1996). ... ..
[6] R. Simion. A multiindexed Sturm sequence of polynomials and unimodality of certain combi-

natorial sequences, J. Combinatorial Theory (A) 36; 15-22 (1984).
[7] R. Stanley. A symmetric function generalization of the chromatic polynomial of a graph, Adv.

Math 111; 166-194 (1995).
[8] R. Stanley. A matrix for counting paths in acydic digraphs, J. Combinatorial Theory (A) 74;

169-172 (1996).
[9] R. Stanley. Graph colorings And Related Symmetric functions: Ideas and Applications,

Math (to appear). . _.. _..
[10] R. Stanley'and J. R. Stembridge. On immanants O^Jacobi-Tmdl^matnces and PCTmutations

.with restricted positions, J. Combinatorial Theory (A) 62; 261-279 (1993).

549


