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Abstract

Most of the structure constants in the class-algebra of the alternating group, An,
can be expressed in terms of corresponding structure constants in the class-algebra of
the syinmetric group, <?". This statement has to be modified for Ai -structure constants

that involve more than one conjugacy class stemming from a common <Sn conjugacy
class, when the latter consists of cycles of odd and distinct lengths. The ̂ -structure
constants of the latter type depend on the <?" character that corresponds to the self-
conjugate Young diagram whose principal hook lengths are equal to the set of odd

and distinct cycle lengths mentioned above, evaluated over the third conjugacy class
involved. The results provide a combinatorial interpretation of the <?" self-conjugate
irreducible characters.
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1 Introduction

Let G be a finite group. By C(G} we denote the set of conjugacy classes of G. For a non
empty subset A of G let [A] = E«£A ̂    CG'. where CG is the corresponding group-algebra.
IfA C Gis a G-conjugacy class, then [A] is the corresponding conjugacy class-sum. The
conjugacy class-sums span the center of the group algebra, and play a major role in its
representation theory [1, 2].

The product of any pair of class-sums [A] and [B] can be expressed as a Unear combination
of class-sums with non-negative integral coefficients (A. 5)|^, which we caU the class-algebra
structure-constants. Thus,

[A]-[B}= E (A-5)|^].
C£C(G)

The coefficient (A . -B)|^ can be expressed in terms of the ordinary irreducible characters in
the form [1]

(A. B)|^=I^?_^. ^X^- (1)
rez(ff)

Here, Z(G) is a complete set of inequivalent ordinary irredudble representations (iRREPs)
of G, ̂  is the ordinary character corresponding to the IRREP T evaluated at (7, and [F| is
the dimension of F. \X\ stands for the cardinality of the (finite) set X.

One circle of problems that have been addressed rather extensively involves the es-
tablishment of criteria for distinguishing between vanishing and non-vanishing structure
constants, without actually evaluating the latter. In particular, class-sums [A] such that
(A . A)[^ ̂  0 VC' e C(G) have been looked for. In the alternating group this issue has been
extensively investigated [3, 4].

In the present article we express the structure constants in the alternating group in terms
of data that involve the symmetric group, as foUows; Most structure constants are found to be
immediately related to corresponding structure constants in the symmetric group (Theorem
A). Structure constants in a certain weU-defined subset differ from the corresponding <?n
structure constants by a term that depends on a particular ̂ -irreducible character (Theorem
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B). This result can easily be inverted to derive an expression for the Sn irreducible characters
that correspond to self-conjugate ^-IRREPS in terms of the difference between two An
structure constants (CoroUary 1). The investigation presently reported is motivated by
the recently formulated, albeit conjecturaUy, combinatorial procedures for the evaluation of
both structure constants [5, 6] and (central) characters [7] in the symmetric group, but is
independent of these procedures. However, using these procedures the present results aUow
the evaluation of all the structure constants in the class-algebras of the alternating groups.

2 Conjugacy classes and irreducible

characters of the alternating group

The alternating group An consists of the even permutations of Sn, i.e., permutations that
consist of an even number of cycles of even length and any number of cycles of odd length.
The orders of these groups satisfy

l<?n|IA. |= n\
2 (2)

The set of the Sn conjugacy classes that consist of cycles of odd and distinct lengths
wiU be denoted by Co(Sn). The set consisting of aU the other Sn even conjugacy classes,
i.e., classes which consist of permutations that contain (an even number of) cycles of even
lengths, or at least one pair of cycles of equal odd lengths, wiU be denoted by Ce(Sn).
Fact 1: Each conjugacy class C £ (:<, (<?") splits within An into a pair of conjugacy classes
of equal cardinalities, that will be denoted by C±. The conjugacy classes C   Ce(<?n) remain
single conjugacy classes within An.

From Fact 1 it foUows that V(7   C»(^) ^ Cf = C+\JC- where Cf±   Co(A, ). Hence,

\Co{An)\ = 2|Co(^)|. On the other hand, Ce(<?n) = Ce(Az).
For the symmetric group T wiU denote both an IRREP and the corresponding Young

diagram. The set of self-conjugate Sn IRREPS wiU be denoted by 2"s(<?n), and the set of non
self-conjugate Sn IRREPS wiU be denoted by Zjv(<?n).
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Fact 2: The restriction of the ̂ -IRREPS T G Z5(<?n) <o A. ̂  reducibk, splitting into a parr
of Az-IB-REPS F±, o/ eguaZ dimensions. <?n-lRREPS F £ Z^(<?n) remain irreducible within
An; however, the restrictions to A^ o/<9n-IRREPS with conjugate Young diagrams are found
to coincide.

Denote the <?n-IRREP which is conjugate to F = {Ai, As, . . .} C Zjv(<?n) by F =
{AI, A2, . . .}, >i and A, being the row lengths in the corresponding Young diagrams (i.e., \i
are the column lengths of F). We say that F > F if3fc such that A. = A, forz = 1, 2, ..., fc-1
and Afc > Afe. We specify a set ofinequivalent, non self-conjugate, Ai-IRREPS by

^(A. ) = {r e ^(<5n) | r > r}.

From Fact 2 it foUows immediately that \Is{An)\ = 2\Is(Sn)\ and

WA)1 = ^1^(^)1.
FinaUy,

Z(^) = Z5(<?n)UT^(5^) (3)

and

Z(Az)=^(A. )OTN(Az). (4)

Let C G Co(<?n) have d (odd and distinct) cycles. Tc denotes the self-conjugate <?n-IRREP
whose principal hook lengths {^,, ; z = 1, 2, ..., d} are equal to the cycle lengths of C.
(The principal hook length h^ in a Young diagram F is the number of boxes in the hook
that consists of the box in the (diagonal) position (z, Q and the boxes to the right and below
that box). {Ft} consists of the pair of A, -IRREPS corresponding to Tc. For A   Ce(Sn) we
define {F^} = 0. For c  Ai C' wiU denote the 5n-conjugacy class that contains c.

Lemma 1 [8, 9]: The An irreducible characters can be evaluated as follows:

(i) force A, and T G T^(Ai)

^(A. ) = X&(<?n) = X£(5n) .

(ii) forc^Ar, and T £ IsW\{Tc}

^+(A. )=xF(A. )=^(<5n).

553



(iii) for C £ Co{S^} and T =Tc

X^(Az) = X^(^) = ^(<?n) + xr
X^(Az) - X^+-(^n) = ^^(<?n) ~ Xr

where XF = ^(-l)mn^^ an(f m = j(n - rf).

3 Structure constants in the class-algebra of the al-
ternating group

It wiU be convenient to define the reduced structure constant

(,., )L. (A^.{a'D^=^A\\BT-
Thus, by eq. 1

(a"6)L==i^T £ TFT^M^L^r^r^T

(5)

(6)IG;lr^)iri'
To simplify the notation, the A^ irreducible characters wiU be denoted by x^(Az) while the
Sn irreducible characters wffl be denoted by ̂ , where F and A are understood to denote
irreps and conjugacy classes of An and <?n, respectively.
Theorem A: In the alternating group algebra the reduced structure constants can be written
in the form

(°-^L(^)=(^6)[^(<?n)+^
where

^ -^E ^{ dWx^W^w -^-4^},
^G^A,B,C

(7)
and

AA,B,C={^}U{^}U{^}.
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(8)

(9)

PROOF: Let A, B and C be <?n-conjugacy classes consisting of even permutations (i. e.,
permutations that belong to An). Using eq. 3 and Fact 2, eq. 6 yields

(° . &)|, (<5") - ^ ̂ 2 E ̂ TX^X?+ £_ ̂ ^x^ ̂ .
'c' '" n' [ r^f I1! " - rei7(s^

Similarly, using eqs. 2, 4, Lemma 1 and Fact 2, eq. 6 yields

(a. fc)|^(A)=
^ £ ^Sx£;cE+ £ ^(A)x£(A. )x£(AO^.
nl lr ^^)lil reis(A»)

The Theorem follows by using Lemma 1 to compare eq. 8 and eq. 9. .
Theorem B: The non vanishing residual terms are

^^, A. =-^, A-=PA^A(-l)m

(ii) %^, 5 = -^:, 5 = -PAXBA

fm;^:^=pA (l+2(-l)7n)

(iv) ̂ :^_ = -PA

(v) K^^ = PA(I - 2(-l)m)

and their conjugates (in which A+ and A- are interchanged). Here, PA = |TJ^|» lrA | "

the dimension of T A as an ̂ -IRREP, ̂  is an <$" character, and B ^ A as S^ conjugacy
classes.

PROOF: Using Lemma 1 we note that the residual term TZ^p vanishes unless at least two of
the conjugacy classes involved correspond to the same member of Co{Sn); otherwise, at most
one character diiFers from the corresponding Sn character in each term, so the correspondiiig
contributions of F+ and T- add up to zero. The various cases in the Theorem foUow by
evaluating eq. 7, using Lemma 1 and the identity ̂ A = (-l)m. .

Let
0 if(7 ^(A»)

l if C e Co{An)
nc =
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Remark: The structure constant (A . 5)[ (^) is obtained by multiplication of the reduced
structure constant (a. &)[ (^, ) with the product of the cardinahties of the conjugacy classes
A and B in An, i-e.,

"A+ns
|A|^|5|^=|Ak|B|^.

PROOF: Use eq. 5 and Fact 1. .

Finally,

Corollary 1: For A e C^S^}, B £  (<?"), B ^ A anrfm= i(n- d) where d is the number
of cycles in A (=number of principal hooks in T^)

XTBA = (-lr2sfk ((4+ . A+U^ - (A+ . A-)|, (-4»)) (10)

PROOF: Use the first case in Theorem B. .

Cominents:

(i) Eq. 10 is easily checked to hold for B = A   Ca(Sn) if (A+ . A±)| is interpreted as the
average of (A+ . A±)|^ and (A+ . A±)|^_; no^e ̂ af (A+ . A±)| = (A+ . A±)| for
Co{Sn) 3 B^ A.

(ii) If B is an odd conjugacy class of Sr, eq. 10 holds trivially, since in this case -^A = 0.
In view of these Comments a more general version of CoroUary 1 can be formulated as

follows

Corollary 1': For A 6 C^S^), B £ (;(<?, ), anrf m = |(n - <f) w/iere rf z5 the number of
cycles in A (=number of principal hooks in T^}

x^A = (-ir ,
ITAL
Ws ((A+. A^^(A, )+(A+. A^)^(A.)

-(A+. A-)[^(A)-(A+. A-)[^(A. ))
where, ifB^: Co(<S'n) then it is understood that B+ = B~ = B.

Corollary 1 provides a combinatorial interpretation for the <?" characters corresponding
to self-conjugate IRREPS, evaluated over arbitrary conjugacy classes.
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4 Some illustrative examples

As:
The C<?3-conjugacy class-sum [(3)] = (123) + (132) gives rise to the two CAs conjugacy

dass-sums [(3)]+ = (123) and [(3)]- = (132). Since

[(3)]+. [(3)]+ = [(3)]-,
[(3)]+. [(3)]- = [(I)3],

;2, 1] _ ;2,1] _coroUary 1' yields ̂  = 2 and ̂  = -1-
^4:

The C^4 conjugacy class-sums

[(3)(1)]+ = (123)(4)+(214)(3)+(341)(2)+(432)(1)
e. g., ((12)(34))(123)(4)((12)(34)) =(214)(3),

[(3)(1)]- = (132)(4)+(241)(3)+(314)(2)+(234)(1)

yield

[(3)(1)]+. [(3)(1)]+ = 4[(3)(1)]-,
[(3)(1)]+. [(3)(1)]- = 4[(1)4] + 4[(2)2] .

Using coroUary 1' it foUows that ^] = 2, x[^] = 2 and xi23')2(]5) = -1-

^5:
Evaluating

[(5)]+ . [(5)]+ = 5[(5)]+ 4- [(5)]- + 3[(3)(1)2] + 12[(1)5]

and

[(5)]+ . [(5)]- = [(5)]+ + [(5)]- + 3[(3)(1)2] + 4[(2)2(1)]

we obtain x^'l] = 6, xg'^ = 0, xg'^) = -2 and xfe1 '11 
= 1.
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-4e:

Although already a bit cumbersome, the direct evaluation of the relevant conjugacy class
sum products is stiU feasible, yielding

[(5)(1)]+ . [(5)(1)]+ = 72[(1)6] + 9[(3)(1)3] + 16[(2)2(1)2] + 9[(3)2] + 16[(4)(2)]
+20[(5)(1)]++11[(5)(1)]-

and

[(5)(1)]+ . [(5)(1)]- = 18[(3)(1)3] + 16[(2)2(1)2] + 18[(3)2] + 16[(4)(2)]
+11[(5)(1)]+ + 11[(5)(1)]- .

Hence, ̂  = 16, ̂ y = 0, ̂ j, = -2, ̂  = -2, ̂ I = 0 ..d ^ = 1.
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