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Abstract

Jhe^mit? ^il?lns?onal irreducible representations of the non-compact Lie groups
5p(2n, R) and 5'0* (2n) are non-unitary while the noa-trivial unitary projective irreducibie
representations are aU of infinite dimension. We intoduce the notion'of generic tensor
product of a non-unitary irreducible representation with a unitary irreducible represen-
tation This product would be generic if it is fuUy resolvable into'a finite set of unitary
irreduable representatiom. The conditions for a product to be generic are given and
methods and algorithms for the resolution of generic products developed. Relationships
between the^generic products for the two groups, Sp(2n, E) and 50* (2n) are established.
Conditions for the stabilisation of products are given.

Resume

Les_ representations irreductibles de dunension finie des groupes de Lie non com-
pacts Sp(2n, R) et 5'0*(2n) sont non imitaires alors que les representations unitaires
irr^ductibles de ces groupes sont des representations projectives de dimension infinie
Nous appelons produit tensoriel generique Ie produit d'une representation finie par une
representation de dimension infinie qui peut s'exprimer comme une somme finie de re-
presentations irreductibles unitaires. Nous donnons des conditions de genericite pour ces
produits ainsi qu'un algorithme pour les calculer. Nous donnons enfin des conditions de
stabilisation de ces produits et des relations entre les produits generiques pour Sp(2n, R)

171 J.

1 Introduction

Multiplicities in tensor products of irreducible representations of compact Lie groups can be
calculated by combinatorial algorithms such as the Littlewood-Richardson rule (correspond-
ing to U(n)) or more recent ones derived from Kashiwara's crystal base [2, 3] or Littehnann's
paths. [14].

The irreducible representations of the compact forms of the classical Lie groups are aU fi-
nite dimensional and unitary. On the contrary, the interesting umtary representations of their
non-compact real forms (such as U(p, g), 5p(2n, R), S0{p, q), S0*(2n), ... ) are aU infinite
dimensional, and in fact, only projective representations coming from linear representations
of some covering groups (such as the metaplectic group Mp(2n)for 5p(2n, R)).

Although no combinatorial rule is known for decomposmg tensor products of such rep-
r^entation, expUcit formulas which have been worked out m some particular cases [4, 11,
12, 9, 18, 19], suggest the existence of an underiymg combmatorics somewhat sumlar to the
one encountered in the compact case, and T. Roby [16] actuaUy succeeded in constructmg
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a Robinson-Schensted type correspondence accounting for the decomposition of particular
tensor products.

Here, we present some partial results on another interestmg case : tensor products of a
(non-unitary)'finite dimensional representation by a unitary one. While such products are
actuaUy difficult to understand in the general case, under some genericity condition their
behaviour presents some similarities with the compact case.

2 Background and notations
2. 1 The orthogonal and symplectic groups
First we recall the definition of the orthogonal and symplectic groups.

If V is a 2n-dunensional Unear vector space and g and h are symmetric and antisymmetric
biluiear forms, then

50(2n) := {A   G'L(V) = GL(2n)|AT0A = ff, detA = 1} ,
Sp{1n) := {A   G'L(V) = G£(2n)|AT/iA = 9, detA = 1} .

Now, briefly recaU a few results about the representations for these groups. We first examme
the tensor representations of these groups by remarking that (see [7, 13]) the tensor powers
of the defining representation V of GL{2n) can be decomposed m tUs manner

ySm ^ flt
'^

^h2m
l(lj,)<2m

where the suinmation is over partitions ^ of m and the multipUcity of the irreducible repre-
sentation (irrep) V^ is /^, the dunension of the irrep (/x) of the symmetric group 5m. Now
it is possible to'decompose these representations of GL{2n) imder restriction to the groups
50(2n) and Sp(2n). In terms of characters if we write {^}, [^] and (/^) respectively for the
standard, orthogonal and symplectic Sdiur functions, we have the foUowing relations

{/x} =b"/£>] =M+[^/2]+[/x/4]+. --
{^} =WB) ={^+W11)+W22}+W1111)+-.-
[^ ={ii/C} ={^}-W2}+W31}+...
(^ =WA} ={^}-W11}+W211}+...

where A, B, C and D are mfinite series of S-functions [1, 6, 7], that we define in this manner

B=fl.T^. =^m=^w
^L-XiXj -J -J

where f3 runs over partition with even columns, and D is

^n. T^-S-m-Ew
i<,j
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where 6 runs over partition with even rows. The series C and A are defines by

c=5=2:(-i)I?'»m=E(-i)''IM
v v

A=^=E(-i)^w=E(-i)^M
where in the Frobenius notation

and

v =

a = ai
ai+1

Ofc+1
Ofc

Ok
Ofc+1

and the notation {p, /\} corresponds to the skew Schur function s^/^.
At this stage, it is now possible to give a caracterisation of the irreducible tensor repre-

sentations of S0(2n) and Sp(2n}. They are labelled by partitions (A) and if we denote^the
lenght of A by l(\) we obtain

. for S0(2n) : [A] for l{\) < n and [A]+, [A]- for /(A) = n

. for Sp{2n) : (A) for Z(A) ^ n

The existence ̂ of the terms [A]± for l(\) = n is linked with the existence of self-associate
irreps of 0(2n) [1]. In addition we can recall that the group S0(2n) has irreducible sprnor
representations that we write [A; A]+, [A; A]_.

Now we consider the Lie algebras Cn and Dn associated with Sp(2n) and S0(2n). For
the^algebra Dn, we can identify the two finite-dimensiomial spin irreps as the representations
with lowest weights

A+=CJn_i,
A- =  <;".

For Cn we have no spin representations but the role of the basic spin representation is in
some sense played by the Weil or metaplectic representation. In fact Cn can be realised in
terms of difiEerential operators on C[a;i ,3:2,... , a;n] :

e, = Xi9i+i, fi = Xi+^Qi, hi = XiQi - a;,-i-i^+i
for z = 1, 2,... , n- 1 which generate An_i and with

e" = 22;n' "^" = -2 ^n = 2 + a;n^n '
If we write V± the module generated by the action of Cn on v+ = 1 and v^ = Xn, this have
lowest weight

A+ =^n,
A- = -Un_i + J0;n ,
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and they are also irreducible.
In this paper we will write this representations as A+ = {^(0)) and A_ == <^(1)).

tensor powers of A generate a set of projective unitary infinite-dimensional irreducible repre-
sentatious of Sp{2n, R) that we will denote by d (A)).

One can construct analogous metaplectic representations for the group 50* (2n) and we
wUl write it [fc(A)] [11, 9].

2.2 Finite dimensional irreducible representations of 5p(2n, R) and 50* (2n)
The finite dimensional non-unitary irreducible representations of the non-compact Lie groups
5p(2n, E) and S0*(2n) are in one-to-one correspondence with those of the tensor unitary
ineducible'representations of the compact Lie groups 5p(2n) and 0(2n) and may be similarly
labeUed by partitions of mtegers into at most n non-zero parts. Likewise, the branchmg
rules for the f mite non-unitary irreducible representations under the reductions 5p(2n, R) -).
U(n) and S0*(2n) -> U(n) are identical to those of the corresponding unitary irreducible
representations of compact Lie groups and hence we have [6] for 5p(2n, K) -^ U(n)

W-^E{C;A/DC} w
e

and for 50* (2n) -^ U{n)
M^E{C;A/5C}

c

where the B and £> are two mfinite series of 5-functions [1, 8]. Thus under Sp(S, R)
we have

(2)

U(4)

<31}-

while for 50* (8)

[31]-

{3T;0} + {3; 1} + {21; 1} + {2;2} + {2; I2} + {2:0} + {12;2}
+{i2; 0} + {i;3} + {i; 21} + 2{i; 1} + {31} + {2} + {I2}
?7(4) we have

(3)

{31; 0} + {3; 1} + {21; 1} + {2; 2} + {2; I2} + {2; 0} + {I2; 2}
+{l;3}+{i;21}+{l;l}+{31}+{2}.

For any irreducible representation {/Z; A} of U(n), with a mixed tensor basis, there^always
exists an associated irreducible representation {?}, with a covariant basis, such that [6]:

{^\}-eu{p} (5)

for some mteger u. SpecificaUy one has for {/Z; A} with (^u) a partition with p non-zero parts
and (A) with q non-zero parts in U(n)

pl = \i+ jui
p2 = >2+ Pl

Pg =\q+ ^ (6)
Pq+1 = P-l- P-n-q
Pg+2 = All - P'n-q-1

Pn =0
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with

£u = £-^ .

Thus for the group (7(4) we obtam the result of (4) in a covariant basis as

[31] ̂  £°({2}^ {31}) + £-1({212} + {321} + {412} +{31})
e-2({23} + {322} + {422} + {321})'+ ̂ 3(432} + {322}) .

In the case of partitions into n non-zero parts we have the U(n) equivalence

{Al, A2,..., A^}=£-A"{Ai-An, A2-An,... , 0}.

(7)

(8)

(9)

For subsequent usage we note that the irreducible representations (A) and [A] may be
mapped into one another and that [6, 10]

(A)-, [\/W}
[A]-> (A/V)

where W is the infinite 5-function series [1]
00 r

Ty=^$^ (-l)s{r, s} with r-s even, .
r=0s=0

(10)

(11)

and V = W-1.
If Wsc = (a, a- 1,... , 1) then (A), c is said to be a staircase partition with the u

property [10] that

(A/W), c = (A/V), c = (A),, . (12)

" s ?/e decomPositions obtained for the irreducible representations (21) and [21] have the
same U(n) content. In the case ofn = 4 we obtam the U(4) content

{2T^O}+ {2L^+ <12; l^t<i;2} + {i;12} + {i;o} + {21} + {1}
= £°({1} + {21}) + £-1({13} + {221} + {312}+'{21}) + e'-2(322} + {221}) .

Products of U(n) irreducible representations may be evaluated by noting that [1]
{fi; A} x {^; i/} = ^{(^/a). (p/r); (A/r) . (z. /o-)} .

(13)

0-,T

Two useful specialisations are

and

{/2;A}xM=^{/ya;A. (^/a)}

WxM=E{/7c;^/c}.
<

(14)

(15)

(16)
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2. 3 The metaplectic representation of Sp(2n, R) and S0*(2n)
The standard discrete series unitary irreducible representations of 5p(2n, R) may be labelled
as {^fc(A)} where

\[ +^<k and \[ < n (17)
whUe those of S0*(2n) may be labelled as [11, 9] [k(\)] where

X[ < min{k, n) . (18)

Under restriction to the C7(n) subgroup we have [17, 11] for 5p(2n, R) -> U{n)

(^kW)-> ̂  . {{\, }[;} - D^}N (19)
with N = mm(n, fc). The first . indicates a product hi U(n} and the second . a product m
U(N) as unplied by the final subscript N. {A, }^ is a signed sequence [17, 11] of terms ±{p}
such that ±[p] is equivalent to [A] under the modification rules [1, 5] of 0(k).

Equation (19) greatly simplifies if

\[^n<k- A/2 (20)

to just

^k(\}}-^£k.. {{\}. DN}N. (21)
Irreducible representations satisfying (20) will be said to be highly standard [11] and the
products are all evaluated m i7(n). hi such cases the signed sequence coiisists of the single
leading term.

Likewise, under restriction to the U(n) subgroup we have [9] for 5'0*(2n) -> U(n)

[kW]->£k-{{X,}w-BN}N (22)
where N = min{2k, n) and the signed sequences are evaluated in Sp(2k). An irreducible
representation of S0*(2n) will be highly standard if

2k+2-\[>N= mm (n, 2k) (23)

and (23) sunplifies to

[k(\)}-^£!:-{{X}-BN}N. (24)
Highly standard irreducible representations have the unportant, and usefiil, distinction

that (21) and (24) can be inverted by formmg the product, in (7(n), of the mverse 5'-function
series (C = £>-1) and (A == B ) respectively. For irreducible representations that are
standard but not highly standard the occurrence of signed sequences prevents such a simple
mversion.

Two irreducible representations of <S'p(2n, E) (or <S'0*(2n)) will be said to be equivalent if
under Sp(2n, R) ->. U{n) (or under S0*(2n) -^ U(n)) they yield the same U(n) characters
[11]. These equivalences arise in the particular case of highly standard irreducible represen-
tations. Thus in Sp(6, R) we have the equivalences

(6(1)) = (5(211)) = (4(322)) = <3(433)) . (25)
All these u-reducible representations satisfy the constraints of (17) whereas the irreducible
representation (2(544)) is necessarily nuU.
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3 Generic products

Here we consider the tensor product of a finite dimensional non-umtary irreducible represen-
tation with an mfinite duuensional unitary irreducible representation. In general the problem
? d?er^ining the content of an arbitrary tensor product of a finite dimensional non-umtary
irreducible representation with an infinite dimensional unitary irreducible representation is
complicated by the diversity of representations of non-compact groups. In practical applicar
tions there is a class of products that are of great importance, namely the class of generic
products. A product is said to be generic if it is fully resolvable into just a finite series of stan-
dard unitary irreducible representations of the relevant non-compact Lie group. A product
will be said to be highly generic if it is fully resolvable into higUy standard umtary irreducible
representations In most of this paper we shall be considering the higUy generic case.

..we now take UP the Problem of determinmg the highly generic conditions, first for
50*(2n). Consider the 50*(2n) product [p] x [k(X)] where'[fc (A)] is a highly standard 7r^
reduclble rePresentation and [^u] is a finite non-mutary irreducibte representation . Under
50*(2n) -». (7(n)the irreducible representation [^] certaiiily yields a lowest weight ̂ (n)irTe-
ducible representation {//} such than in a covariant basis

{ft} = e-^ . {^^} = £-w . {^} (26)
where 4 is the number of v.^^. If the product is higUy generic then certainly

M x [&(A)] D £A-^' . (^, . A. 5), = [A; - /. i (^, . A)] . (27)
The product will be assuredly highly generic if every term on the right-hand-side of
highly standard.

Let us write

IS

[A;-^(^. A)]=^[fe-^(p)].
p

(28)

We seek the smallest value of k that ensures that every [k - /ii(p)] is highly standard. If
} T " ^en ̂  ~.^p^ ̂ [k~^ +Pn(P- Pn)] Which is of higher weight than terms with

p\ < n. The worst case scenario is when p[=n-l. In that case (23) leads to

k>n+fj, i-l . (29)

In the general case the minimum value of k depends upon the longest term in [^ . A). Settmg
^=min(n-l, n-^+^+^) (30)

gives, for 2k >n the condition for highly standardness as
£-n-l

k>n+^+ (31)

Ifn> 2k then necessarUy p^ < 1 and [k{p}} = [k(n)} is highly standard for all k aud n.
Now consider the case of 5p(2n, R). The condition for highly standardness becomes, from
I)

k+1- p'^> mm(n, fc) (32)
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Two cases arise.
Firstly, if fc > n then

k>n-i (33)

where t is as defined in (30).
Secondly, ifn<fc then necessarily p^ = 0 and {k(p)} = (fe(171)) is highly standard for all

k and n.

We continue with an example. Consider the S0*(6} fip [1] x [3(21)]. Under 50*(6) ^
(7(3)

[l]-^{i;0}+{0;l}=. -l{12}+£°{l} (34)

and smce [3(21)] is highly standard we have from (24)

[3(21)]-^(e3. {21}--83)3. (35)

Thus at the U(3) level we have the product of (4. 9) with (4. 10) leading to

[1] x [3(21)] ̂  (({1:0} + {0;1}). (e3 . {2^1} . B)),
=~((£-1{12}+£0{1})-^2-{21});5)^
= ((£2({32}' + {312} + {221}) + £3({22}+ {31}+{212}). 5)3
= ((£4{1} + £3({22} + {31} + {2} + {I2}) + £2{32}). B), .

The result of (36) may be mverted using the A-series which is the inverse of the B-series
to give the final result

[1] x [3(21)] -> [4(1)] + [3(22)] + [3(31)] + [3(2)] + [3(12)] +[2(32)] .
Note that the irreducible representations in the result are all highly standard and hence the
product is highly generic. That the result is highly generic could have been predicted from
(29).

Algorithm I. To evaluate the generic product [fj} x [fc(A)].
1. Perform the decomposition of the irreducible representation [^] under SO* {In} ->. U{n)

using (8) and convert the U{n) irreducible representations into their covariant form
using (6) and (7).

8. Perform the decomposition of the irreducible representation [fc(A)] under S0*(2n) ->
C7(n) using (S4).

3. Form the tensor product of the above two sets ofU(n) irreducible representations to give
a list of irreducible representations each of the form £p{p}-

4. Use (9) to reduce. every partition of n non-zero parts to give an equivalent U{n) irre-
ducible representation involving a partition into fewer than n non-zero parts.

5. Replace every ep{p} by \p(p}} to give the final S0*(2n} content of the f ip.
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The corresponding algorithm for evaluating Sp{2n, R) f ips follows in the same manner.

Algorithm II. To evaluate the generic product {^) x {^(A)).
1. Perform the decomposition of the irreducible representation {?,} under Sp(2n, R) -> U(n)

using (1) and convert the U{n) irreducible representations into their covariant form
using (6) and (7).

2. Perform the decomposition of the irreducible representation (gfc(A)) under Sp{2n, R) ->.
U(n) using (22).

3. Form the tensor product of the above two sets ofU(n) irreducible representations to give
a list of irreducible representations each of the form £p{p}.

4. Use (9) to reduce every partition of n non-zero parts to give an equivalent U(n) irre-
ducible representation involving a partition into fewer than n non-zero parts.

5. Replace every eP{p} by {p(p)} to give the final Sp(2n, R) content of the f ip.
The above two algorithms are tedious in application but can form the basis for more direct

methods of evaluatmg f ips. In the case of higMy generic products considerable simplification
is possible. It foUows from (2), (15) and (24) that a highly generic f ip for S0*(2n) may be
resolved by evaluating the expression

M x [kW] -> E[fc({c7^; WBQ . (A/a)})]
^

(37)

with the - indicating a product m U(n}.
Likewise for Sp(2n, K) we have

{p} x (gfc(A)) ̂  Ec,a<^({C7^; W-DC) - (A/a)})) . (38)

At this stage we remark that a product can be generic but not highly generic. Consider
first the group SO* (8) for which [3(1)] is higUy standard. If we computed the product using
(33) we would obtain

[1] x [3(1)] = [3(12)] + [3(2)] + [3(0)] + [2(212)j

but [2 (212)] -> 0. In this case algorithm I fails as the lowest weight (7(4) irreducible represen-
tation is e2 {212} and cannot be inverted to give a standard 50* (8) irreducible representation
. In this case the product is clearly not a generic product.

Consider now 5p(8, E) and the generic products (1) x (3(1)} and (1) x (3(2)}. Using
algorithm II we obtain

<1) x (3(1)) = 2<3(12)) + {3(2)) + (3(0)) + (2(212))
(1) x {3(2)) = 2(3(21)} + (3(3)) + (3(1)) + <2(312)) (39)

where <2(212)) and {2(312)} are standard but not highly standard. In this case while in each
case algorithm II holds (30) does not. These products are generic but not highly generic.
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4 Stabilisation of Products

The first algorithm makes it possible to calculate f ips for the group S0*(2n). The resiilts
exhibit certain stabilisation properties. Two particular types of stabilisation can occur.

Firstly, we note that if the product is highly generic we can obtain an infinite set of
products from that product by increasing A; by an integer or half-integer x. This follows by
noting that in such a case the value of ek is mcremented while the Schur function products
are unchanged. Thus we can write

^(p)l.
/M,[kW] - ^], [k+xW] (40)

Secondly, we can coiisider a form of stabilisation, as where k remams coiistant, as exem-
plified in (35), and the product is at least generic. Let us mtroduce the notation (\+ h) =
(AI + ,1, ^2,... ) where /i is an integer. Coiisider the Schur function product

{A}-M=E^M
where the C^,, are the usual Littlewood-Ridiardson coefficients. Increasing the first part of
\by h corresponds to mcreasing the difierence Ai - Az to h. But rewriting the new product
in terms of Yamanouchi words is equivalent to putting h more 1's in the first row and this is
only possible if p, i > h. Otherwise we must add some 2's, 3's etc.. to the other rows. This
has the consequence that

. [p(p)I _ ^[p(p+/l)]
^],[kW] - ^M, [A(A+h)] (41)

with the condition that AI - As > pimax ' where pim^c corresponds to the maximal first part
is the list of the covariant representations obtained usmg (1). For this reason the condition
(41) is available with the condition that AI -Az ̂ /^i +,^2 .

We can illustrate these results by four examples obtained for Sp{6, R).
<21) x (5(31)) =

(7(1))
+ 2{6(12))
+ 4(5(41))
+ (4(62))
+ (4(4))
+ <3(54)}

(21) x (6(31)} =

(8(1))
+ 2{7(12))
+ 4(6(41))
+ (5(62))
+ (5(4)}

+ (6(4))
+ <6(0))
+ 4{5(32))
+ 2{4(53))
+ 2<4(32))
+ <3(52)}

+ <7(4))
+ (7(0))
+ 4(6(32))
+ 2(5(53))
+ 2{5(32))

+ 2{6(3l))
+ (5(52))
+ 3(5(3))
+ 2(4(51))
+ 2<4(31))
+ <3(43)),

+ 2(7(31))
+ (6(52))
+ 3(6(3))
+ 2(5(51))
+ 2(5(31))

+ <6(22))
+ (5(5))
+ 4(5(21))
+ (4(42))
+ <4(22))

+ <7(22))
+ (6(5))
+ 4<6(21))
+ (5(42))
+ (5(22))

+ 3{6(2))
+ (5(43))
+ (5(1))
+ 4(4(42))
+ (3(63)}

+ 3<7(2)}
+ (6(43))
+ {6(1))
+ 4<5(42))
+ (4(63))

(42)

(43)

+ (4(54)) + (4(52)) + (4(43)),
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(21) x (5(41)) =

(7(2))
+ 2(6(21)}
+ 4(5(51))
+ <5(22))
+ (4(54))
+ (4(32))

(21) x <5(51)} =

<7(3))
+ 2(6(31))
+ 4(5(61)}
+ (5(32))
+ (4(64))
+ <4(42))

+ (6(5))
+ (6(1)}
+ 4(5(42))
+ (5(2))
+ 4(4(52)}
+ <3(73)}

+ (6(6)}
+ (6(2))
+ 4(5(52))
+ <5(3))
+ 4(4(62))

+ 2(6(41))
+ <5(62))
+ 3(5(4))
+ <4(72))
+ (4(5))
+ (3(64)}

+ 2(6(51))
+ (5(72))
+ 3(5(5))
+ (4(82))
+ <4(6))

+ (6(32))
+ (5(6))
+ (5(32))
+ 2(4(63))
+ 2(4(43))

+ 3(6(3))
+ (5(53))
+ 4(5(31))
+ 2(4(61)}
+ 2(4(41))

+ (3(62)} + (3(53)),

+ (6(42))
+ <5(7)}
+ (5(43))
+ 2(4(73))
+ 2(4(53))

+ 3(6(4))
+ (5(63))
+ 4(5(41))
+ 2(4(71)}
+ 2(4(51)}

+<3(83)) +(3(74)} + (3(72)) +(3(63)}

(44)

(45)

The examples mustrate the diflFerent stabUity properties. Examples (42) and (43) are an
mustrationof the property (40) .̂Examples (42) and (44) show a situation where'theruTe^T)
does not hold while (44) and (45) respect that particular condition.

5 Relationships between Sp(2n, R) and S0*(2n) products
Recallmg (10) and that WB=D and VD = 5 we can establish the f ip equivalences for the
miUtiplicities

a[p(p)L,,.,, =
'Kl 3W>; <46)
>WV}, {k(\)) =- L/M, [fc'(A)] -

In the special case of (p.) being a staircase partition we recall (12).

6 Concluding remarks

The aun of this paper has been to obtain a series of results for the practical evaluation of
cert^n generic products of finite and in! mite representations of Sp(2n, R) and S0*(2n). In
the case of highly generic products there is a considerable simplification smce by avoidmg ir-
reducible representations associated with signed sequences it becomes unnecessary ~to~cons?der
!?an??g_r_ul,ef for the i^fimte dimensional irreducible representations, eflFectively reducmg
the entire problem to applications of the Littlewood-Richardson rule with certam'constrauite&

The results exhibit certain stabUisation properties which make it possible to deduce the
form of an infiuite set of generic products from a particular nununal product. The conditions
for stabilisation have been specified.
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