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Abstract

The StraUer number of binary trees has been introduced by hydrogeologists and rediscovered ̂ in
computer science in relation with some optimization problems^ ExpUcit expressions have been^given^for
the"Straiiler'distribution, i. e. binary trees enumerated by number of vertices and Strahler number. Two

other'Strahler distributions have been discovered with the logarithmic height of Dyck
pruiung number of forests ofplanar trees in relation with molecular biology. Each ofthese threeclasses
are-en^merated by the Catalan numbers, but only two bijections preserving the Strahler parameters
have been'expUcited7byFrancon between binary trees and Dyck paths, by Zeilberger between binary
trees and'forests of planar trees. We present here the missing bijection between forests of planar trees
aiid''Dyck "paths sending the pruning number onto the logarithmic height. A new functional equation
ifor'the StraUer generadng function is deduced. Some orthogonal polynomials appear, they are one
parameter TchebychefT polynomials.

Resume

Le nombre de Strahler d'lm arbre binzure a ete introduit en hydrogeologie et redecouvert en infor-
matique'en'relation avec certains problemes d'optimisation. Des expressions expUates ont ete doimees
po"ur'lla'distnbution''du parametre nombre de Strahler, c'est-a-dire pour Ie nombre d'arbres bmaj"s
teumeres'selon'lenombre de sommets et leur nombre de Strahler. Depuis, deux autres distributions de
Strahleront'etede'couvertes: la hauteur logarifchmique des chemins de Dyck et 1'ordre des forets d'arbres
planaires en relation avec la biologie moleculaire. Chacune de ces trois classes d'objets est enumeree
par'lesnombres de Catalan, mais seulement deux bijections conservant les parametres desAstnbutions
deStraUeront ete expUcitees: 1'une de Francon entre les arbres binaires et les mots de Dyck, 1'autre
de Zeilberger eatre les'arbres binaires et les forets d'arbres planaires Nous donnons ime bijection entre
les forets d'arbres planaires et les mots de Dyck envoyant Ie parametre ordre sur Ie parametre hauteur
loganthmique. "Une nouveUe equation fonctioimeUe est deduite pour la serie Seneratnce assoaee \&
distribution de Strahler. Certains polynomes orthogonaux apparaissent, ce sont des extensions a un

parametre des polynomes de Tchebycheff.

1 Strahler number of a binary tree

We use the following classical notations for binary trees. A binary tree is a^triple B = (L, r, R) or is reduced
to'an'external vertex denoted by "D". Here L and R are binary trees (left and righ^subtree ̂ respectiv.
and'r denotes the root of B. In Figure 1, internal vertices are denoted by "0" . The number of binary
trees with n internal vertices (and (n + 1) external vertices) is the Catalan number

1 (2n^cn =(^T)ln.
Definition 1. The Strahler number St(B) of the binary tree B is defined inductively by the relation

St(n} = i,

(1. 0) St(L, r, R)=
i{St{L) =St(R), then]. +St{R),
elsemax{5f(£), 5<(A)}.
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3 = St(B)

1 1
Figure 1: The Strahler number of a binary tree

order k

i<k

Figure 2 : The Strahler labelling of a binary tree

In other words, the Strahler number of a binary tree is obtained by the following process: label the external
verticesby^l^and each internal vertex by the recursive rule displayed in Figure'2. The Strahlernumber'Is
the label of the root.

The Strahler number of binary trees appeared in computer science in relation with the coding and computa-
tion of arithmetic expressions using only binary operations. Such an expression is encoded by a binary tree.
Each internal vertex corresponds to a binary operation. Each external vertex corresponds to a variable (see
Figure 3).

see

(cd+ef)g
c de f

Figure 3 : The binary tree associated to an arithmetic expression

The ̂minimum number of registers needed to compute an arithmetic expression is exactly the Strahler
number of the underlying binary tree. Computer scientists have shown remarkable "properties 7or"'the
asymptotic behaviour _of the mean of the parameter Strahler number over all binary trees with'n intern'al
jertic esisee Flajolet'Raoult; vuillemin [8L Kemp [n]- For that, they established the generating function

numbers.

Let Sn, k (resp. Sn, ^k) be the number of binary trees B with n internal vertices and Strahler number
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St(B) = k (resp. 5<(B) ^ fc). We denote the corresponding generating functions by

Sk(t)=^Sn, ktn,
n>0

S^k(t)=^Sn, ^ktn.
(1. 1)

n>0

Let Un{'t) be the ntb Tchebycheff polynomial of second kind, that is the polynomial defined by the relation

(1. 2)

We denote by Fn(t) the polynomial

(1. 3)

sin(ra + 1)0 = (sin 0) Un(cose).

F^i)=Un[t/1).

These polynomials form a sequence ofmonic (i. e. the coefficient oftn is 1) orthogonal polynomials. The mo-
ments are the Catalan numbers {Cn}n>o- These polynomials satisfy the following 3-terms linear recurrence
relation

(1. 4) Fn^{t)=tFn(t)-Fn^(t) Fo=l, F, =t.

The reciprocal polynomials F^(t) = tnFn(l/t) are even polynomials and we define Rn(t) by the following
relation

(1. 5) R^{t-2)=tnFn(l/i).

Then, Flajolet, Raoult and Vuillemin [8] and Kemp [11] gave the following explicit expression for the
Strahler generating function:

(1. 6a)

(1. 6b)

S<k(t)=

5, (<)=

R2'. -2(t)
J?2"-l(<)

^-1-1
^-l(<)

We will call Strahlei distribution the distribution given by the relation (1. 6b) for a parameter defined on
a set of objects enumerated by the Catalan numbers. Here are the first values of the generating functions
Sk(t) :

(1. 7) 5l(<)=l S2(t) =
t

l-2t S3(t) = ts
l-6t+ IQt2 - 4t3

In fact, the Strahler number of a binary tree was introduced much earlier m hydrogeology in the mor-
phological study of rivers networks. Horton introduced in [10] a process classifying the rivers of a fluvial
network by "order". This rule was simplified by Strahler [16] and corresponds to the labeling of a binary
tree defined in Figure 2: a river starting at a source point has order 1, two rivers of order k joining together
give rise to a river of k+l, while a river of order z joining a river of order k > i gives rise to a river of order
k (see Figure 4 for the Garonne rivers network in the South-Ouest of France). We have supposed that the
river network has no island, delta and that no more than two rivers join at the same point. This labeling
of river by order is the starting point for many works in hydrogeology for quantitative study of morphology
of rivers network.
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Figure 4: The Garonne river network

More recently, the Horton-Stahler analysis for ramified patterns has been refined with the introduction of
the. "r_amificati011 matrix"of a binal;y tree' and applied in computer graphics in order to give synthetic
images of trees and landscapes, see Viennot, Eyrolles, Janey, Arques [23] and Figure 5. Other" appUcat'ions
?^Tlsob. ee^give?in the analysis offractal ramified pattems in physics by Vannimenus and Viennot [18].
s-trai?ler. numberrs, ?o. appeared in some const]'uctic)ns related to the derived series of the free Lie algebra,
see Reutenauer [15]. A survey paper about Horton-Strahler analysis in various sciences is Viennot [22].

k& ..t,^-?''8. . *C .? -^J-C'A....'

Figure 5: Synthetic images of trees based on Horton-Strahler analysis (from [23])
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2 Logarithmic height of Dyck paths

Fran^on [9] gave a bijective proof of identity (1.6a) by relating the Strahler number with another parameter
on the so called Dyck paths.

Recall that a Dyck path is a sequence of points (so,... , ssn) of N x N such that SQ = (0, 0), ssn = (2ra, 0)
and each elementary step is North-East (NE) or South-East (SE). An example is displayed in Figure 6. A
very classical bijection between Dyck paths of length In and binary trees with n internal vertices, using
the prefix order of binary tree, is well known.

12 34 5 6 7 8 91011121314

Figure 6 : A Dyck path

The height H(w) of a, Dyck path is the maximal height (or level) of its vertices, i.e.

(2. 1) H(w) = ,max_{y, | s, = (.£,, %)} .
0<i<2n

It is well known that the generating function for Dyck paths u with bounded height H(u) ̂  p is given by
the following relation (see Kreweras [12], Berstel [2]).

(2. 2) -^ ^11^11/2 ̂  Rp(t)
. :H^ ~^(^)'

where Rp(t) is the "modified" Tchebycheff polynomial defined by (1.5), the summation is over Dyck paths
and \\ui\\ denotes the length of the path.

Identity (1.6a) says that the generating function S<k(t) for binary trees having Strahler number < k is the
same as the generating function for Dyck paths bounded by height 2-2. In other words, the parameter
Strahler has the same distribution than the following parameter defined on Dyck paths:

(2. 3) LH{^)=[\og, (l+H^))\.

We will call the parameter LH(iJ) the logarithmic height of the path u.

Fran^on [9] gave a bijection between binary trees and Dyck paths sending the paramenter "Strahler number"
onto the parameter "logarithmic height" . This bijection is defined recursively and in fact proves that the
double generating function S(t, x) defined by the following relation

(2.4) S(t, x) = ^S, (t)xk-1 =^Sn, kXk-ltn ,

satisfies the functional equation

ft>l n,k

(2. 5) S(t, x)=l+ xt

(l-2tr\\l-2t ,x

Such an equation is a linear Read-Bajraktarevic equation, as considered by Bergeron, Labelle, Leroux [I],
pages 230 and 235.
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Figure 7 : Secondary structure of 16S-RNA of E. Coli (from [17]) and its associated forest ofplanar trees

3 Order or pruning number of planar trees

Surprisingly^ Strahler distribution reappeared in the context of molecular biology. We consider molecules of
single-stranded nucleic acids, as for example RNAs. The primary structure is The sequenceTf bases" linked

^on?s;_ There arf fouI'Possible bases denoted by A (Adenine), U (Uracyl), G (Guanin e)and C (Cytosine). Such bases can be linked together by hydrogen bonds (A with U, and G with Q. The
primary structure is thus folded into a planar graph called the secondary structure, as shown in"Figure7"
The notion of order or complexity of a secondary structure has been introduced, in relation with the
computation of the energy of the secondary structure, see Mitiko Go [14], de Gennes [5], Waterman"

structure of RNAs are branching structures. The important underlying structure is aforest'of
pknar/rees'. as shown on Figure 7- The order (or comPlexity) of the molecuIeTs"the~order~ofthe'fo7es^ as

''

Recall that a plana^ooted tree T (or pYanar tree for short) is : if T has only one vertex, then T is reduced
to^.haLpom_t'_els_e. T = (r; Tl> . : . 'rp)! where r is a vertex called the root and TiV-"'-' ̂ "is'an ordered
^!nce. ofpl.anaJlr ees;_Aforest ofPlaIlar. (rooted) trees is an ordered sequence of planar "trees, "see'Figure

. number of forests of planar trees with n vertices is the Catalan number (of course, "th'is is'also°the
^ofplanar trees^with n+ 1 vertices). Very classical bijections are known between'fore'sts'ofpfa nar

trees, Dyck paths and binary trees making a "golden triangle" of bijections which commute" Let'us'n'cw
order of a forest.

AL?a^e^of_af?^st F is a maximal seque"ce (si,... , Sy) of vertices such that, for !. = 1,... , g- 1, s, has
wly one son and this son is s. +i, and moreover s, is a /e'af of the forest "(or end pout, 7. e'it'has no"sonT

are^two by two disjoint. We introduce the operator S "deletion offilaments". The forest
is obtained from F by deleting all the vertices of all fikments of F. The order'of'the forest is"the

minimum mteger k such that 81{{F) = 0 (see Figure 8). Zeilberger [25] called this parameter the pru^^
number of the forest.
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Figure 8: Filament, operator S and pruning number of a forest of plane trees

Waterman [24] raised the problem of finding the generating function for a11 Possibk secoDdary. stmctures
of~ordeT-fc. l-This was solved by Vauchaussade de Chaumont and Viennot [19], [20] by applying the so-
called DSV-methodology due to M. P. Schiitzenberger (using algebraic langages, ^ see a survey in Delest
[4]) and analytic calculus. A preliminary problem was first to find the generating function for the pruning
number of forest. The surprise was that this parameter has indeed the Strahler distribution. At the UQAM
meeting in 1985, 1 offered a price of ten bottles of Bordeaux wine "domaine des Mattes" 1982 for a bijection
between binary trees and forest of planar trees sending the Strahler number onto the pruning number, (see
Labelle Leroux [13], p 386). Zeilberger [25] obtained a bijection and consequently received the ten bottles
of'wine which were'given to him at" the 3rd FPSAC in Bordeaux. Later and independently, ^E.^ Bender
and R. CanfieTd also constructed a bijection. As with Fran^on's bijection quoted in section 2, Zeilberger's
bijection is also highly recursive.
A natural problem is thus to complete the "golden triangle" of Strahler bijections between the three class:
bina'ry'trees, Dyck paths and forest ofplanar'trees. The remaining problem is to construct a direct bijection
between forest of planar trees and Dyck paths, sending the parameter pruning number onto the parameter
logarithmic height.

4 A Strahler bijection between forest of planar trees and Dyck
paths

As with Fran^on's and Zeilberger's bijection, our bijection is defined recursively. We suppose that we have
constructed a bijection <f>k between forests of planar trees with n vertices having pruning number k, and
Dyck'paths of length In having logarithmic height k. We then construct the bijection ̂ +1 for the same
objects but with respective parameters k +1.
First consider the case k = 1. The filament f o-^>^=^=>^^ of length n is associated with the
following Dyck path <^>i(/) of length 2n: /w w w \.

A forest F of order 1 is a sequence of filaments Fi,... , Fp. The associated Dyck path <^i(F) is obtained
by concatenating the sequence of Dyck paths <f>i(Fi),... , </>-i. (Fp).
The transition from <pk t-o <f>k+i is based on the following basic remark. Let G be a forest of order k +1 and

let-F=J(G') be the'forest of order k obtained by deleting the filaments. Suppose that F has n vertices.
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Conversely, we can derive G from F by adding some filaments. At the end of each leaf of F. we must
add at least two filaments. Figure 9 is symbolic. We have colored in red the two leftmost filaments"'AU
^he othe^filaments added are colored in green. These filaments are added to G by packag7o7"fans'of
filaments" (sequences of filaments hanging from the same vertex) at each of possible positions marked by
a green asterisk^ Figure 9. The number of such positions is 2n + 1. Such a fan of green filaments may
^;empt^ but, th.e, red filament^have length at least 1 Remark that for the position^ onthe'orange'ime
(Figure 9), each filament of the fan creates a new root for the subtrees of the forest.

Legend:
black
red
green

Figure 9: From a forest of order k to a, forest of order k+1

Figure 1^0 gives a precise example of a passage from a forest F of order A: to a forest G of order ;fc + 1 (here
k=l). The forest ^ is^olored black. The first edge of the red filaments is colored red^then'all the other
edges are colored blue. The edges of the green filam'ents are colored in green. The forest G'IS obtained from
^ by adding the red, blue and green edges. Recall that the two red edges for each leaf are compulsory^th'e
blue and green edges are not.

. ff

Figure 10: From a forest of order 1 to a forest of order 2
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If <^ is the path of length 2n related to F by <pk , we construct the path r] = <f>k+i(G) using some "rewriting
rules" inside the elementary steps of u according to the three possible colors of the edges added to F in
order to get G.

Define a strip as to be the portion of N x N contained between two consecutive lines with equation y = p
and y = p+ 1. We color alternatively the strips into two colors yellow or white, according to the parity of
p, starting with color yellow for the strip between the line of equation y = 0 and y = 1. The border of each
strip is displayed in green, see Figure 1 la. Assume by induction that the number of leaves in the forest F
is exactly the number of SE steps in the yellow strips (colored in red in Figure 11). The construction is as
follows.

Step 1. The yellow strips are "dilated" vertically by a factor 3. The elementary steps located inside the
white strips (colored in black in the Figures) are left invariant. Each elementary step in the yellow
strip (colored in red in Figure 11 a) is replaced according to the rewriting rules displayed in Figure
lib. We get a path Ct(u) as shown in Figure lie. In this last figure, the green lines, borders of the
yellow strips, have been preserved in the dilatation. We have colored in green each of the (2n + 1)
intersection points of the paths u and a(u) with the green lines in Figures lla and lie. Intuitively,
in Figure lie, the red SE steps correspond to the leaves of the forest obtained from F by adding the
red edges. The blue NE and SE steps correspond to the positions of possible blue filaments. The
green points correspond to the (2n + 1) possible positions for adding fan of green filaments.

Legend:
: black

: green

. : green point

\-\
: red

: blue

/^. -,;":~^!^y^^u.^.;^^'~~. <-.,' ^.,<'.:^.^.^
j ;^^^'^^~^:~-^^^--^^ --'^^ . ^'\s^r-
f "^ '''"'::;';^v_.. ^^\^-^':s' . ;<. "r"AC~;<. '. ?-';, ''/'^

?L:^^<'^LJ^ ^'i~~"<!.

*>\^. ~:x-^:-.^-i. ^< .,

Figure 11: (a) yellow strips, green border ; (b) rewriting rules ; (c) Step 1

Step 2. Each blue step / or \ is replaced by /\/\... / or \/\... /\ according to the length
of the corresponding filaments, see the example in Figure 12, according to the forest of Figure 10.

Step3. At the place of each green vertices ofuj is inserted a sequence (in green in Figure 12) of the following
form. If the vertex corresponds to the ;t fan -F, of green filaments of G, let c^, be the path (,&i (F;).

a) if the vertex is on a lower border of a yellow strip then we insert u,,
b) if the vertex is an upper border of a yellow strip, then we insert the path u* obtained from u,

by replacing the SE steps with NE steps, and conversely.
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Legend : - : black - : green : blue

Figure 12 : Steps 2 and 3

Step^l, 2, and 3 yield the path r, = ^+i{G). An example is displayed in Figure 12, from the forest ofFis
erecurrence hypothesis about the number of leaves and SE steps in~the yellow strips-is-satisfiedoand

it is easily seen that LH(rj) =k+l. Finally we can check that the map ̂ +1 is a bijection."

5 A new functional equation for Strahler numbers

^fact_'. the. recllrsive construction Presented ̂ in the previous section gives rise to a functional equation,
fromjhe one obtained by Franson [9]. We-need here to introduce a tripFe-generatmg7unctTon

t, x, y) counting forests of planar trees by their number ofvertices (variable t), by-thdr~pT uni'ng'number
(variable x) and by their number of leaves (variable y).
Proposition 1 The generating function S(t, x, y) satisfies the following functional equation

(5. 1) S(t, x, y)=l+ xyt ^ _^{- t) _(l-t)
i-(i+y)< ' (i-(i+y)<)"|», i-(i+y)^ Ia;'o~^

2,,2t^y

An idea of the proof is given with the formula (5. 1) displayed with colors in Figure 13. Each block of terms
same color corresponds to some construction in the passage from the forest F to'the'fo'rest G"as

displayed in Figure 10.
^ 

For exampk^he red term tlty" and the blue term "1/(Y-<)"'correspond" to the
blue and red edges of the forest F. The green term is'the generating function'for fans of'filam^ts" th'at'is

(5. 2) (1-t)
(1 - (1 +y)t) 1- w

l-t

The second term of the right handside corresponds to a forest of order 1. The proposition follows from
^tandar^ techniques in^enumerative combinatorics, using for example the theory of spec'ies,"

^ Leroux [I], or Flajolet's model of decomposable structures [7]. " " -'---' -o-"'

S(t, x,^
red

1 ,+x yt
+x _(!-<)

red i-(i+y)< ' '(i-(i+y)7y
green

(1-<). Y... <v-
l-{l+y)tj >a:'^./0-

red
t?

green blue

Figure 13 : Colors for the proof of (5. 1)
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From section 4, we can also deduce that the same functional equation holds for the generating function
C(Ta ;,"y7of"Dyck'paths counted by their length (variable <) by their logarithmic height (variable x) and

by'their'number of steps going from an odd level to an even level (variable y). If we write

(5. 3) C(t, x, y)=^Ck(t, y)xk,
fc>l

we can deduce from standard techniques (Flajolet [6] or Viennot [21]) the following identity

(5. 4) Ck[t, y)=
ifc_1 ^k-1ty-ly2

R^^-i(t, y}

where the R(t, y) are "y-analogues" of the modified TchebychefF polynomiak of the second kind. They are
defined as in'section 1 by replacing the recurrence (1.4) by the recurrence

(5. 5) Fn^(t, y)=tFn(t, y)-S(y)Fn^(t, y) with Fo = 1, F, =ty,
and 6(y) is 1 or y according to whether n is odd or even. These polynomials are a kind of "sieve polynomials",
as considered in Chihara [3] .
Combining Fran^on's bijection with our bijection, we get a bijective proof of the equality of the three
following double distributions:

. binary trees by Strahler number and number of left "internal" edges (i. e. edges connecting two
internal vertices),

. Dyck paths by logarithmic height and number of SE steps starting from an odd level,

. forests of planar trees by pruning number and number of leaves.

Recall that each of the three second parameters has individually the so-called /^-distribution (Kreweras
[12])', "gi'ven by'theNarayana numbers'^ (^) (^^). In fact the generating Poly^omial (l^th^ v^naue^, of
these numbers are nothing but the moments of the orthogonal polynomials Fn(t, y) introduced by {5. 5).
Finally we'can show" that a slight modification of Zeilberger's bijection preserves the corresponding double
distribution.
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