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Abstract

The Strahler number of binary trees has been introduced by hydrogeologists and rediscovered in
computer science in relation with some optimization problems. Explicit expressions have been given for
the Strahler distribution, i.e. binary trees enumerated by number of vertices and Strahler number. Two
other Strahler distributions have been discovered with the logarithmic height of Dyck paths and the
pruning number of forests of planar trees in relation with molecular biclogy. Each of these three classes
are enumerated by the Catalan numbers, but only two bijections preserving the Strahler parameters
have been explicited: by Frangon between binary trees and Dyck paths, by Zeilberger between binary
trees and forests of planar trees. We present here the missing bijection between forests of planar trees
and Dyck paths sending the pruning number onto the logarithmic height. A new functional equation
for the Strahler generating function is deduced. Some orthogonal polynomials appear, they are one
parameter Tchebycheff polynomials.

Résumé

Le nombre de Strahler d’un arbre binaire a été introduit en hydrogéologie et redécouvert en infor-
matique en relation avec certains problemes d’optimisation. Des expressions explicites ont été données
pour la distribution du paramétre nombre de Strahler, c’est-a-dire pour le nombre d’arbres binaires
énumérés selon le nombre de sommets et leur nombre de Strahler. Depuis, deux autres distributions de
Strahler ont été découvertes: la hauteur logarithmique des chemins de Dyck et Iordre des foréts d’arbres
planaires en relation avec la biologie moleculaire. Chacune de ces trois classes d’objets est énumérée
par les nombres de Catalan, mais seulement deux bijections conservant les parametres des distributions
de Strahler ont été explicitées: 1'une de Frangon entre les arbres binaires et les mots de Dyck, I’autre
de Zeilberger entre les arbres binaires et les foréts d’arbres planaires. Nous donnons une bijection entre
les foréts d’arbres planaires et les mots de Dyck envoyant le paramétre ordre sur le paramétre hauteur
logarithmique. Une nouvelle équation fonctionnelle est déduite pour la série génératrice associée la
distribution de Strahler. Certains polynémes orthogonaux apparaissent, ce sont des extensions a un
paramétre des polynomes de Tchebycheff.

1 Strahler number of a binary tree

We use the following classical notations for binary trees. A binary tree is a triple B = (L, 7, R) or is reduced
to an external vertex denoted by “00°. Here L and R are binary trees (left and right subtree respectively)
and r denotes the root of B. In Figure 1, internal vertices are denoted by “O” . The number of binary
trees with n internal vertices (and (n + 1) external vertices) is the Catalan number

O =y ()

Definition 1. The Strahler number St(B) of the binary tree B is defined inductively by the relation

St(0) =1,
(1.0) St(Lr, ={ if St(L) = St(R),then 1+ St(R),
else max{St(L), St(R)}.
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Figure 1: The Strahler number of a binary tree Figure 2: The Strahler labelling of a binary tree

In other words, the Strahler number of a binary tree is obtained by the following process: label the external
vertices by 1 and each internal vertex by the recursive rule displayed in Figure 2. The Strahler number is
the label of the root.

The Strahler number of binary trees appeared in computer science in relation with the coding and computa-
tion of arithmetic expressions using only binary operations. Such an expression is encoded by a binary tree.
Each internal vertex corresponds to a binary operation. Each external vertex corresponds to a variable (see
Figure 3).

c d e f

Figure 3: The binary tree associated to an arithmetic expression

The minimum number of registers needed to compute an arithmetic expression is exactly the Strahler
number of the underlying binary tree. Computer scientists have shown remarkable properties for the
asymptotic behaviour of the mean of the parameter Strahler number over all binary trees with n internal
vertices, see Flajolet, Raoult, Vuillemin [8], Kemp [11]. For that, they established the generating function
for Strahler numbers.

Let Sn (resp. Sp <k) be the number of binary trees B with n internal vertices and Strahler number
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St(B) = k (resp. St(B) < k). We denote the corresponding generating functions by
Si(t) = Snxt",
n>0

SSk(t) = Z Sn’sktn :

n>0

(1.1)

Let Uy, (t) be the nt® Tchebycheff polynomial of second kind, that is the polynomial defined by the relation

(1.2) sin(n 4 1)8 = (sin8) Un (cos?) .

We denote by Fy(t) the polynomial

(1.3) Fa(t) = Un(t/2).

These polynomials form a sequence of monic (i.e. the coefficient of " 1s 1) orthogonal polynomials. The mo-
ments are the Catalan numbers {Cp }n>0. These polynomials satisfy the following 3-terms linear recurrence
relation

(14) Fn+1(t) = tFn(t) = Fn_l(t) 3 F() = 1, F1 =15

The reciprocal polynomials F; (t) = t"Fn(1/t) are even polynomials and we define R,(t) by the following
relation .

(1.5) R.(t}) =t"Fo(1/t).

Then, Flajolet, Raoult and Vuillemin [8] and Kemp [11] gave the following explicit expression for the
Strahler generating function:

(1.60) Sl = 2220
25711
(1.6b) St) =

We will call Strahler distribution the distribution given by the relation (1.6b) for a parameter defined on
a set of objects enumerated by the Catalan numbers. Here are the first values of the generating functions

Sk(i) :
t i
—1—-2t S3(t)_A1—6t+10t2—4t3'

(1.7) Sit)y=1 ;5 Sa(f)

In fact, the Strahler number of a binary tree was introduced much earlier in hydrogeology in the mor-
phological study of rivers networks. Horton introduced in [10] a process classifying the rivers of a fluvial
network by “order”. This rule was simplified by Strahler [16] and corresponds to the labeling of a binary
tree defined in Figure 2: a river starting at a source point has order 1, two rivers of order k joining together
give rise to a river of k+ 1, while a river of order 7 joining a river of order k > i gives rise to a river of order
k (see Figure 4 for the Garonne rivers network in the South-Ouest of France). We have supposed that the
river network has no island, delta and that no more than two rivers join at the same point. This labeling
of river by order is the starting point for many works in hydrogeology for quantitative study of morphology

of rivers network.
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Figure 4: The Garonne river network

More recently, the Horton-Stahler analysis for ramified patterns has been refined with the introduction of
the “ramification matrix” of a binary tree, and applied in computer graphics in order to give synthetic
images of trees and landscapes, see Viennot, Eyrolles, Janey, Arques [23] and Figure 5. Other applications
have also been given in the analysis of fractal ramified patterns in physics by Vannimenus and Viennot (18].
Strahler numbers also appeared in some constructions related to the derived series of the free Lie algebra,
see Reutenauer [15]. A survey paper about Horton-Strahler analysis in various sciences is Viennot [22].

Figure 5: Synthetic images of trees based on Horton-Strahler analysis (from [23])
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2 Logarithmic height of Dyck paths

Frangon [9] gave a bijective proof of identity (1.6a) by relating the Strahler number with another parameter
on the so called Dyck paths.

Recall that a Dyck path is a sequence of points (so, . .- ,52n) of N x N such that sp = (0,0), s2n = (2n,0)
and each elementary step is North-East (NE) or South-East (SE). An example is displayed in Figure 6. A
very classical bijection between Dyck paths of length 2n and binary trees with n internal vertices, using
the prefix order of binary tree, is well known.

oo

1 2 3 4 5 6 7 8 9 1011 12 13 14

Figure 6: A Dyck path

The height H(w) of a Dyck path is the maximal height (or level) of its vertices, 1.e.

(2.1) Hw) = Ogrggn{yf | 8: = (2, 3)} -

It is well known that the generating function for Dyck paths w with bounded height H(w) < p is given by
the following relation (see Kreweras [12], Berstel [2]).

(22) S 2 Ry (1)

w:H(w)<p Rp+1(t) ’
where R,(t) is the “modified” Tchebycheff polynomial defined by (1.5), the summation is over Dyck paths
and ||| denotes the length of the path. :

Identity (1.6a) says that the generating function Sk (t) for binary trees having Strahler number < k is the
same as the generating function for Dyck paths bounded by height 2% — 2. In other words, the parameter
Strahler has the same distribution than the following parameter defined on Dyck paths:

(2.3) LH(w) = [logy(1+ H(w))]-

We will call the parameter LH (w) the logarithmic height of the path w.

Francon [9] gave a bijection between binary trees and Dyck paths sending the paramenter “Strahler number”
onto the parameter “logarithmic height”. This bijection is defined recursively and in fact proves that the
double generating function S(t,z) defined by the following relation

(2.4) S(t,e) = Y Se(t)a* 1 =) Sape i,
k>1 n,k

satisfies the functional equation

xt t 2
(2.5) St,z) =1+ (1_%)5((1_%) x) .

Such an equation is a linear Read-Bajraktarevié equation, as considered by Bergeron, Labelle, Leroux (1],
pages 230 and 235.
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Figure 7: Secondary structure of 16S-RNA of E. Coli (from [17]) and its associated forest of planar trees

3 Order or pruning number of planar trees

Surprisingly, Strahler distribution reappeared in the context of molecular biology. We consider molecules of
single-stranded nucleic acids, as for example RNAs. The primary structure is the sequence of bases linked
by phosphodiester bonds. There are four possible bases denoted by A (Adenine), U (Uracyl), G (Guanine)
and C (Cytosine). Such bases can be linked together by hydrogen bonds (A with U, and G with C). The
primary structure is thus folded into a planar graph called the secondary structure, as shown in Figure 7.

The notion of order or complexity of a secondary structure has been introduced, in relation with the
computation of the energy of the secondary structure, see Mitiko G6 [14], de Gennes [5], Waterman [24].
Secondary structure of RNAs are branching structures. The important underlying structure is a forest of
planar trees, as shown on Figure 7. The order (or complexity) of the molecule is the order of the forest, as
defined below.

Recall that a planar rooted tree T (or planar tree for short) is : if T" has only one vertex, then T is reduced
to that point; else T = (r; T3, ... ,1,), where r is a vertex called the root and Th,...,Tp is an ordered
sequence of planar trees. A forest of planar (rooted) trees is an ordered sequence of planar trees, see Figure
8. The number of forests of planar trees with n vertices is the Catalan number (of course, this is also the
number of planar trees with n + 1 vertices). Very classical bijections are known between forests of planar
trees, Dyck paths and binary trees making a “golden triangle” of bijections which commute. Let us now
define the order of a forest.

A filament of a forest F' is a maximal sequence (sy, ..., s,4) of vertices such that,fori=1,... ¢—1, s; has
only one son and this son is s;,;, and moreover sq Is a leaf of the forest (or end point, i.e it has no son).
The filaments are two by two disjoint. We introduce the operator § “deletion of filaments”. The forest
6(F) is obtained from F by deleting all the vertices of all filaments of F. The order of the forest is the
minimum integer k such that §*(F) =  (see Figure 8). Zeilberger [25] called this parameter the pruning
number of the forest.
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Figure 8 : Filament, operator ¢ and pruning number of a forest of plane trees

Waterman [24] raised the problem of finding the generating function for all possible secondary structures
of order k. This was solved by Vauchaussade de Chaumont and Viennot [19], [20] by applying the so-
called DSV-methodology due to M. P. Schiitzenberger (using algebraic langages, see a survey in Delest
[4]) and analytic calculus. A preliminary problem was first to find the generating function for the pruning
number of forest. The surprise was that this parameter has indeed the Strahler distribution. At the UQAM
meeting in 1985, I offered a price of ten bottles of Bordeaux wine “domaine des Mattes” 1982 for a bijection
between binary trees and forest of planar trees sending the Strahler number onto the pruning number, (see
Labelle, Leroux [13], p 386). Zeilberger [25] obtained a bijection and consequently received the ten bottles
of wine which were given to him at the 3rd FPSAC in Bordeaux. Later and independently, E. Bender
and R.Canfield also constructed a bijection. As with Francon’s bijection quoted in section 2, Zeilberger’s
bijection is also highly recursive.

A natural problem is thus to complete the “golden triangle” of Strahler bijections between the three class:
binary trees, Dyck paths and forest of planar trees. The remaining problem is to construct a direct bijection
between forest of planar trees and Dyck paths, sending the parameter pruning number onto the parameter
logarithmic height.

4 A Strahler bijection between forest of planar trees and Dyck
paths

As with Francon’s and Zeilberger’s bijection, our bijection is defined recursively. We suppose that we have
constructed a bijection ¢ between forests of planar trees with n vertices having pruning number &, and
Dyck paths of length 2n having logarithmic height k. We then construct the bijection ¢x41 for the same
objects but with respective parameters k+1.

First consider the case k = 1. The filament f o—0O—O—0—O of length n is associated with the

following Dyck path ¢1(f) of length 2n: //\/\/\/\\

A forest F of order 1 is a sequence of filaments Fi,...,Fp. The associated Dyck path ¢;(F) is obtained
by concatenating the sequence of Dyck paths ¢1(Fi1),...,¢1(Fp).

The transition from ¢x to ¢x41 is based on the following basic remark. Let G be a forest of order ¥+ 1 and
let F = 6(G) be the forest of order k obtained by deleting the filaments. Suppose that F' has n vertices.
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Conversely, we can derive G from F by adding some filaments. At the end of each leaf of F, we must
add at least two filaments. Figure 9 is symbolic. We have colored in red the two leftmost filaments. All
the other filaments added are colored in green. These filaments are added to G by package of “fans of
filaments” (sequences of filaments hanging from the same vertex) at each of possible positions marked by
a green asterisk in Figure 9. The number of such positions is 2n + 1. Such a fan of green filaments may
be empty, but the red filaments have length at least 1. Remark that for the positions on the orange line
(Figure 9), each filament of the fan creates a new root for the subtrees of the forest.

-y

Figure 9: From a forest of order & to a forest of order k + 1

Figure 10 gives a precise example of a passage from a forest F of order  to a forest G of order k + 1 (here
k =1). The forest F is colored black. The first edge of the red filaments is colored red, then all the other
edges are colored blue. The edges of the green filaments are colored in green. The forest G is obtained from
F by adding the red, blue and green edges. Recall that the two red edges for each leaf are compulsory, the

blue and green edges are not.

Legend:

e black
=—am—am - red
ssasssssss : green

ﬂ — blue

Figure 10: From a forest of order 1 to a forest of order 2
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If w is the path of length 2n related to F by ¢ , we construct the path 7 = #x+1(G) using some “rewriting
rules” inside the elementary steps of w according to the three possible colors of the edges added to F in

order to get G.

Define a strip as to be the portion of N x N contained between two consecutive lines with equation y = p
and y = p+ 1. We color alternatively the strips into two colors yellow or white, according to the parity of
p, starting with color yellow for the strip between the line of equation y = 0 and y = 1. The border of each
strip is displayed in green, see Figure 1la. Assume by induction that the number of leaves in the forest F
is exactly the number of SE steps in the yellow strips (colored in red in Figure 11). The construction is as

follows.

Step 1. The yellow strips are “dilated” vertically by a factor 3. The elementary steps located inside the
white strips (colored in black in the Figures) are left invariant. Each elementary step in the yellow
strip (colored in red in Figure 11a) is replaced according to the rewriting rules displayed in Figure
11b. We get a path a(w) as shown in Figure 1lc. In this last figure, the green lines, borders of the
yellow strips, have been preserved in the dilatation. We have colored in green each of the (2n + 1)
intersection points of the paths w and a(w) with the green lines in Figures 11a and 1lc. Intuitively,
in Figure 1lc, the red SE steps correspond to the leaves of the forest obtained from F by adding the
red edges. The blue NE and SE steps correspond to the positions of possible blue filaments. The
green points correspond to the (2n + 1) possible positions for adding fan of green filaments.

:black  =eeee=es :red

................ : green ——— : blue

@ : green point

Figure 11: (a) yellow strips, green border ; (b) rewriting rules ; (c) Step 1

Step 2. Each bluestep / or \ s replaced by  /\/\.../ or \/\.. J\ according to the length
of the corresponding filaments, see the example in Figure 12, according to the forest of Figure 10.

Step3. At the place of each green vertices of w is inserted a sequence (in green in Figure 12) of the following
form. If the vertex corresponds to the ith fan F; of green filaments of G, let w; be the path é1(Fy).

a) if the vertex is on a lower border of a yellow strip then we insert w;,

b) if the vertex is an upper border of a yellow strip, then we insert the path w} obtained from w;
by replacing the SE steps with NE steps, and conversely.
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Legend :

Figure 12: Steps 2 and 3

Steps 1,2, and 3 yield the path = ®k+1(G). An example is displayed in Figure 12, from the forest of Figure
10. The recurrence hypothesis about the number of leaves and SE steps in the yellow strips is satisfied and
1t is easily seen that LH (n) = k + 1. Finally we can check that the map ®k+1 1s a bijection.

9 A new functional equation for Strahler numbers

In fact, the recursive construction presented in the previous section gives rise to a functional equation,
different from the one obtained by Francon [9]. We need here to introduce a triple generating function
S(t,z,y) counting forests of planar trees by their number of vertices (variable t), by their pruning number
(variable z) and by their number of leaves (variable y).

Proposition 1 The generating function S (t,z,y) satisfles the following functional equation

. zyt z(1-1t) 1=9 \* ty’
(5.1) Sttz,y) =1+ 1_(1+y)t+(1—(1+y)t)5[(1‘(1+y)t) o (1—t)2} '

An idea of the proof is given with the formula (5.1) displayed with colors in Figure 13. Each block of terms
of the same color corresponds to some construction in the passage from the forest F to the forest G, as
displayed in Figure 10. For example the red term “ty” and the blue term “1/(1 —t)” correspond to the
blue and red edges of the forest F. The green term is the generating function for fans of filaments, that is

-9 1
{62} T-(+90) |-
1—-t¢

The second term of the right handside corresponds to a forest of order 1. The proposition follows from
standard techniques in enumerative combinatorics, using for example the theory of species, Bergeron,
Labelle, Leroux [1], or Flajolet’s model of decomposable structures [7].

vt (1-1) ( (1-1) ) 22 1
S(t, z, =1 + 3 S X
i vt sy ewrr | Gy oo ) R S s
red red SN— ~ red “——
green green blue

Figure 13 : Colors for the proof of (5.1)
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From section 4, we can also deduce that the same functional equation holds for the generating function
C(t,z,y) of Dyck paths counted by their length (variable t), by their logarithmic height (variable z) and
by their number of steps going from an odd level to an even level (variable y). If we write

(5.3) C(t,z,y) =Y Crlt,y)z",
k>1
we can deduce from standard techniques (Flajolet [6] or Viennot [21]) the following identity
tz“-1y2‘=-1
5.4 Ce,y) = 53—
(5-4) ) Rok+1-1(t,y)

where the R(t,y) are “y-analogues” of the modified Tchebycheff polynomials of the second kind. They are
defined as in section 1 by replacing the recurrence (1.4) by the recurrence

(55) Fn+1(t7 y) = tFn(t’ y) - J(y)Fn—l(t) y) with FO = 1) F = ty,

and §(y) is 1 or y according to whether n is odd or even. These polynomials are a kind of “sieve polynomials”,
as considered in Chihara [3].

Combining Frangon’s bijection with our bijection, we get a bijective proof of the equality of the three
following double distributions:

o binary trees by Strahler number and number of left “internal” edges (i.e. edges connecting two
internal vertices),

e Dyck paths by logarithmic height and number of SE steps starting from an odd level,

o forests of planar trees by pruning number and number of leaves.

Recall that each of the three second parameters has individually the so-called G-distribution (Kreweras
[12]), given by the Narayana numbers L(™)(,",)- In fact the generating polynomial (in the variable y) of

n

these numbers are nothing but the moments of the orthogonal polynomials Fy(t,y) introduced by (5.5).
Finally we can show that a slight modification of Zeilberger’s bijection preserves the corresponding double
distribution.
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