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ABSTRACT. We establish a duality relation between one of the twisted group algebras
of the hyperoctahedral group Hj and a Lie superalgebra q(no)@q(n1) for any integers
k > 4 and no, n1 > 1, where q(no) and q(n1) denote the “queer” Lie superalgebras.
Note that this twisted group algebra B}, belongs to a different cocycle from the one
By used by A. N. Sergeev in [8] and by the present author in [11].

We will use the supertensor product Ck ®B’k of the 2F-dimensional Clifford algebra
Cr and Bj, as an intermediary for establishing our duality. We show that the algebra

Cr ® B}, and q(no) ® q(n1) act on the k-fold tensor product W = V ®Fk of the natural
representation V of q(no + n1) as mutual supercentralizers of each other (Theorem
4.1). Moreover, we show that B; and q(no) ® q(n1) act on a subspace W' of W as
mutual supercentralizers of each other (Theorem 4.2). This duality relation gives
a formula for the character values of simple B}-modules. This formula is different
from a formula (Theorem E) obtained by J. R. Stembridge (cf. [10, Lem 7.5]).

§1. INTRODUCTION

We establish a duality relation (Theorem 4.2) between one of the twisted group
algebras of the hyperoctahedral group Hi and a Lie superalgebra q(nq) & q(n1) for
any integers k > 4 and ng, n; > 1. Here q(ng) and q(n;) denote the “queer” Lie
superalgebras as called by some authors. The twisted group algebra B}, in focus in
this paper belongs to a different cocycle from the one By used by A. N. Sergeev in
his work [8] on a duality with q(n) and by the present author in a previous work
[11]. This Bj, contains the twisted group algebra Aj of the symmetric group &; in
a straightforward manner (cf. (2.1)), and has a structure similar to the semidirect
product of A and C[(Z/ 27)*).

We will use the algebra Ci ® B,,, where Cy, is the 92k_dimensional Clifford algebra
(cf. (3.2)) and ® denotes the Z,-graded tensor product (the supertensor product)
(cf. [1], [2), [11, §1]). We define a representation of Cr ® B;, in the k-fold tensor
product W = V@ of V = Crot™ @Cno+m1_the space of the natural representation
of the Lie superalgebra q(ng + n1). This representation of Cr ® B., depends on ng
and nq, not just ng +n;. Note that By can be regarded as a subalgebra of Ck ®B’k,
since By, is isomorphic to Cr ® Aj by our previous result (cf. [11, Th. 3.2]). Under
this embedding, our representation of Cx ® B, restricts to the representation of
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By in W defined by Sergeev (cf. Theorem C). We show that the centralizer of
Cr ® By, in End(W) is generated by the action of the Lie superalgebra q(ng) ® q(n;)
(Theorem 4.1). Moreover we show that B}, and q(ne) @ q(n;) act on a subspace W'
of W “as mutual centralizers of each other” (Theorem 4.2). This duality relation
gives a formula for the character values of simple B}-modules (Corollary 4.4). In
this formula, the character values are described as the entries of the transition
matrix between two bases of 2, ® Q2 (see the definition of these rings 2, and Q,
in Appendix, A). These bases are different from those used by J. R. Stembridge in
[10, Lem 7.5] (cf. Theorem E). Note that A; and q(n) act on the same space W’
“as mutual centralizers of each other” (cf. Theorem D).

In Appendix, we include short explanations of some known reults, which we use
in the previous sections.

In this paper, all vector spaces, and associative algebras, and representations
are assumed to be finite dimensional over C unless specified otherwise. The precise
statements of the results skeched in the introduction use the formulation of Z,-
graded representations of Z,-graded algebras (superalgebras) (cf. Appendix, B) as
was used in [1] and [2].

§2. SIMPLE MODULES FOR A TWISTED GROUP ALGEBRA B

For any k > 1, let B; denote the associative algebra generated by 7’ and the 7;,
1 <2< k-1, with relations

(2.1)
=af=1 (1<i<k-1), (wpn)®=1 1<i<k-2),

() =-1 (i-jl22), ('wP=1 (2<i<k-1),
(7'/’)’1)4 = 1.

If k£ > 4, then By, is isomorphic to a twisted group algebra of the hyperoctahedral
group H; with a nontrivial 2-cocycle (cf. [10, Prop. 1.1]). We regard B as a
superalgebra by giving the generator 7/ (resp. the generator v;, 1 <72 < k—1)
degree O (resp. degree 1). Note that this grading of B, is different from that of
B in (3.1) or in [11]. Let A denote the subsuperalgebra of B, generated by ~;,
1 <e< k-1 Ifk > 4, then A is isomorphic to a twisted group algebra of
the symmetric group & with a nontrivial 2-cocycle, with the Zy-grading as in [2]
and [11]. The simple Ax-modules are parametrized by D Py, the distinct partitions
(the strict partitions) of & (cf. [2], [7], [9]). For A € DP;, let V) denote a simple
Ar-module indexed by .

The simple Bi-modules are parametrized by (DP?)i, where (DP?); denotes
the set of all (A,x) € DP? such that |A\| + |u| = k (DP = Uk>o DPr). For

(A, p) € (DP?)y, we construct a Bi-module Vi u indexed by (A, p) as follows. Define
a surjective homomorphism of superalgebras m¢: By — Ay (resp. m4: B, — Ay)
by mi(7') = 1, mi|a, = ida, (resp.mi(r’) = —1, Tila, = id4,). The simple A
(resp. Aj_r/)-module Vy (resp. V,) can be lifted to a B;. (resp. Bj_,,)-module
via mg (resp. 7y _;.), where &' = |\|. This (simple) B;. (resp. Bj_;.)-module is
denoted by V) 4 (resp. V). Let Vi, denote the Bj-module induced from the
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!, ® Bj,_,-module V4 0 V5, namely
Vo,u= B;c ®3;,®5;_k, (Vag© Vo,u)

(see the definition of the operation 6 in Appendix, (B.1)), where Bj, (resp. B _)
is embedded into Bj as a subsuperalgebra generated by 7{ and the 7;, 1 < 1 <
k' — 1 (vesp. Th,., and the 7;, k' +1 < j < k — 1) (7! denotes the element

Yie1%i—z T M Yim2¥i-1 of By)-
Theorem 2.1. (cf. [10], Th. 7.1) {Va . | (\,p) € (DP?);} is a complete set of the
isomorphism classes of simple By -modules.

The proof is analogous to the little group method, and is omitted. It can also

be shown that this parametrization coincides with that by Stembridge in [10, Th.
7.1] modulo the usual difference between Z,-graded and non-graded modules.

§3. THE ALGEBRAS Bi AND Ci ® B,

For any k > 1, let B denote the associative algebra generated by 7 and the o3,
1 < i < k — 1, with relations

(3.1)
P=o?=1 (1<i<k-1), (oioip)’=1 (1<i<k=2),

(oio))? =1 (i—=jl22), (ro)®=1 (2<i<k-1),

(7'0'1)4 = —1.

We regard By, as a superalgebra by giving the generator 7’ (resp. the generator o;,
1 <4< k—1) degree 1 (resp. degree 0). The subgroup of (Bi)* generated by oi,
1 < i < k — 1, is isomorphic to the symmetric group of degree k and it is denoted
by S k-

Let C; denote the 2*-dimensional Clifford algebra, namely Cj, is generated by
&1, ..., &k with relations

(3.2) &£ =1, &&=-& (G#7I) -

We regard Ci as a superalgebra by giving the generator &;, 1 <4 < k, degree 1. Ck
is a simple superalgebra. Let Xy be a unique simple Ci-module.

The superalgebra By, is isomorphic to the supertensor product of the superalge-
bras C and A (see the definition of the supertensor product in [1], [2], [11, §1)).

Define a linear map 9: By — Ci ® Ai by

(3-3) )~ &®l  (1<iLk),

1 ;

7§(fj —&41)®y (1Sj<k—1)

where 7; = 0j_1 -+ 01701 ...0i—1. Then 9 is an isomorphism of superalgebras (cf.
[11, Th. 3.2]). For A € DF;, define a Bi-module Wy by Wy = Xj o Vi. By

19(0‘j) =
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Corollary B.2, {Wy | A € DP,} is a complete set of the isomorphism classes of
simple B-modules.

Let By denote the supertensor product of the algebras C;, and B;,, namely By =
Cr ® Bj. Since By = Cir ® Ak, Bj can be regarded as a subsuperalgebra of By.
For (A, p) € (DP?),, put Wy, = Xj 6 V) ,. By Corollary B.2, {(Wau | (A p) e
(DP?),} is a complete set of the isomorphism classes of simple Bi-modules. Note
that W) , is isomorphic to the Bi-module induced from the By ® Bj_x-module
Wi,¢ © Wy ., where k’ = ||, namely

(3.4) Wiu =g, By ®5,.08,_,, (Wxg 0 Wo,u).

§4. A DUALITY OF By, AND q(ng) @ q(n,)

Let g(n) denote the queer Lie superalgebra, namely q(n) is the Lie subsuperal-
gebra of gl(n,n) (denoted by I(n,n) in [5]) consisting of the matrices of the form

(g ﬁ) Let U, = U(q(n)) denote the universal enveloping algebra of q(n),

which can be regarded as a superalgebra.

Let W denote the k-fold supertensor product of the 2n-dimensional natural
representation V = C"@C" of q(n), namely W = V®*_ We define a representation
©: U, — End(W) by

k J
@(X)('Ul ®---Qu) = Z(_I)X-(W+...+leTx)vl ®---® ij ® Qg
Jj=1

for all homogeneous elements X € q(n) and v; € V (1 £ < k). Note that U, is an
infinite dimensional superalgebra. However, for a fixed number &, i, acts on W
through its finite dimensional image in End(W). Therefore we can use the results
in Appendix, E on finite dimensional superalgebras and their finite dimensional
modules.

Let ng and n; be two positive integers such that ng + ny = n. The Lie superal-
gebra g(no) @ q(n1) can be embedded into g(n) via

4 amoams (5 5).(5 2))- € an).

S Ohn
Qoo

B
0
B
0

oo

The universal enveloping algebra of q(ng) ® q(n1) is isomorphic to U,, ® Uy,
which can be embedded into U, as a subalgebra generated by the elements of

q4(n0) @ q(n1). )
Now we define a representation ¥: B;, — End(W) of By, which depends on nq
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and ni, by

(4.2)
V(EEQ D Q- Qug) = (—1)ﬁ+"'+mvl ® - QP ®--®u (1<iLk),
V(17" ) (v R - Qug) =(Qui)Bv2® - ® v,
Y(1®7) (1 ® - ®vk)

(—1)7r+-+TT

V2

0 ® - ® (Pvj ®vj1 — (—1)70; ® Pvjt1) @+~ ® vk

(1<j<k-1)
for all homogeneous elements v; € V, 1 < j < k, where P and Q denote the
P 0 0 0
. 0 —v-1I, 0 -In, O 0 ;
matrices ( V=11, 0 ) and 0 0 I, 0 respectively. Note

0 0 0 -—In

that, by the isomorphism ¥: By = Cp ® Ax(C Bi), W can be regarded as a By-
module and this Bi-module was investigated by Sergeev in [8] (cf. Theorem C).

Let W' be a Un, ® Un,-submodule of W. Since (q(no) ® q(n1)), = gl(no,C) &
gl(ny,C) as a Lie algebra, and V is a sum of two copies of the natural represen-
tation C* = C™ @ C™ of gl(no, C) ® gl(n1, C), this embeds W’|(g(no)@q(m1)), IntO
a sum of tensor powers of the natural representation, so that this representation
of gl(ng,C) & gl(ny,C) can be integrated to a polynomial representation Ow: of
GL(ny,C) x GL(n1,C). Let Ch[W'] denote the character of O, namely

Ch[Wl](zl’ ceesTnga Y1570 7yn1) = tr oW’(dia‘g(xla ey xno)a diag(yla R 7yn1))’

The following theorem determines the supercentralizer of ¥(By) in End(W) and
describes the characters of simple Up, ® Un,-modules appearing in w.

Theorem 4.1. (1) The two superalgebras U(Br) and Uny ® Un, act on W as the
mutual supercentralizers of each other:

(4.4) Endg, %l)(W) =¥(Bx), Endg, (W) =06@Un, ® Up, )-

(2) The simple By-module Wi, (A, 1) € (DP?)y) occurs in W if and only if
I(\) < no and l(p) < ny. Moreover W is decomposed as a multiplicity-free sum of

simple Br @ (Un, ® Un, )-modules as follows :

(4.5) W =5 o oun) EB W, (UxoUp)
(AM‘)E(DPQ)k
1(2) <no,l(p) <ma

where Uy (resp. U, ) denotes the simple Un, (resp. Up, )-module corresponding to

the simple B)y| (resp. By )-module W (resp. W, ) in Sergeev’s duality (cf. Theorem
C).
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(3) Put Uy, = Ux6U,. Then the character values of Ch[Uy ] are given as
follows :
(4.6)

LICYHLICILID)
Ch[U/\,y](xla---7xnoyy17"‘ayn1) =2 z

Qk(xl,'”axno)Qu(yla- ~-7yn1)
where d: (DP?), — Z, denotes a map defined by d(A, i) = 0 (resp. d(\, p) = 1)
if UA) + U(p) is even (resp. I(A) + (i) is odd) and Qy and Q. denote Schur’s
Q-functions (cf. Appendiz, A).

Proof. First we will show the second equality of (4.4). Then the first equality
also follows from the double supercentralizer theorem (abbreviated as DSCT) for
semisimple superalgebras (cf. [11, Th. 2.1]).

By direct calculations, it can be checked that ©(X ® Y) commutes with ¥ (B)
for any X € q(no), Y € q(n;). Hence we have End;I,(Bk)(W) D OUp, ® Uy,).
Moreover, it can be shown that any element f of End;I,(ék)(W) belongs to the
subsuperalgebra of End(W) = End(V)®* generated by the elements of the form

J
E;?:ll ®®1®X®L1® -®1 with X € q(no) ® q(n;). Hence we have
Endy 5., (W) C OUp, @ Un,).

Since V' can be regarded the space of the natural representation of q(no) ®q(n1),

it follows, by Theorem C, that any simple Un, ®L{n1-m0dule occurring in W = V®*

is of the form Uy o U, (A, u) € (DP?),, and that U ¢ Uy occurs in W if and only
if I(A) < ng and I(p) < ny. By (4.4) and DSCT, W can be decomposed as a
multiplicity-free sum of non-isomorphic simple B; ® (Un, ® Uy, )-modules. Again
by Theorem C, it can be shown that the simple Bk-module, which is paired with
UxoUy, in W, contains Wy 4 ® Wy, as a By ® Bi_i-submodule. By (3.4), it
follows that this simple Bi-module is isomorphic to W), .. Therefore the result (2)

follows.
The result (3) immediately follows from Theorem C, (3) and the fact that

Ch[UéU'](zl,...,zno,yl,...,ynl)
Ch[U)(z1,--.,2n,) ChU')(y1,--.,Yn,) if U or U’ is of type M,
- %Ch[U](azl, e 3%ng) Ch[U)(y1, ..., yn, ) if U, U’ are of type Q

(see the definition of the “type” of simple modules of superalgebras in the argument
before Theorem B.1). O

We can rewrite (4.5) using the isomorphism Wiy = XpoVy, as Bj-modules.

We have
W= P (Xk6Vi,)o U,
(\E(DP2),

The Clifford algebra Ci contains the commuting involutions (; = v/—1&s;_; &4,
Il siss= [%J, of degree 0. For each ¢ = (e1,...,¢,) € Z5, put W¢ = {w e
W ¥(G ® 1)(w) = (-1)%w (1 ¥4 < r)}. Then we have W = @5625 We. Since

(; ® 1 commutes with 1 ®B,’c foreach1<:<r, W¢isa B, ® (Un, ®L(n1 )-module.
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Theorem 4.2. For eache € Z, the submodule W€ is decomposed as a multiplicity-
free sum of simple By ® (Un, ® Up, )-modules as follows :

(4.7) W g Uy Glhny) @ Vi © Ux e
(A\u)E(DP?),

In the above decomposition, the simple By, -modules are paired with the simple Un, ®
Uy, -modules in a bijective manner.
If k is even, then we have

(4.8) Endg,, @u,.l)(WE) =U(By), Endyg, (W)= 0(Un, Q Up,)-

If k is odd, then we have

(4.9) End,

it ®unl)(W€) =0 ®¥(By), Endygp)(W)=C ® O(Un, ® Un,)-

Proof. For a simple By ® (Un, ® Un,)-module U = (Xz © Va,u) © U of W, put
Us={veU|¥( v =(-1)%¢ (1 <¥i <)} for each € = (e1,.-.,6r) € Zj.
Then U€ is a By ® (Un, ® Up, )-submodule of UlB;@(uno@ln,) 2 (Vs pt UA,“)®2T.
Since dimU¢ = 2~ "dim U = dim V} ,, 6 Uy ,, we have Ue 2V, ,0Uyy,. Therefore
the result (4.7) follows.

Assume that k is even. We will show the second equality in (4.8). Then the

first equality follows from DSCT. Since W* is a B, ® (Un, ® Uy, )-module, we have
O (Un, ® Un, )lwe C Endy g (W*). By DSCT, (4.7) and (4.5), we have

dim End{I,(B;c)(We) = dim End;I,(Bk)(W)

since both equal > (dim U, )2 + > ;(dimU au)?. By Theorem
(A EDP} (A EDP)L

4.1, (1), we have dim End ( Bk)(W) = dim O Uy, ®Uy, ). Moreover, it can be shown

that a linear map pe: OUng ® Un,) = OUn, ® Un,)|we defined by pe(f) = flw-
for any f € O(Un, ® Uy,) is bijective. Hence we have dim O Uy, ® Un,)|lwe =
dim Endy, 3;)(W€)- It follows that ©(Un, ®Uy, )|lwe = End;I,(B;)(WE), as required.

Assume that k is odd. Then the supercentralizer Endy B;)(WE ) contains an in-
vertible element ¥(£z) € ¥(Cx). The subsuperalgebra of Endy 3;)(W€) generated

by ¥ (k) is isomorphic to C1. By the argument similar to the proof of (4.8), the
result (4.9) follows from DSCT (cf. [11, Cor. 2.1]). O

Let us mention a relation between the branching rule of the q(n)-modules to
q(no) ® q(n1) and that of the Bi-modules to By, (or that of the Bi-modules to Ag).

If an A-module V restricts to an B-module, we write V |4 for this B-module, for
a superalgebra A and a subsuperalgebra B of A. Moreover, we write [V : U]a (or
simply write [V : U)) for the multiplicity of a simple A-module U in an A-module
V.
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Corollary 4.3. Put

A U, .
Myp = [Ux luno®un1 > Uﬂy'/]’

ml;\l,lf = [W#,V lgk: W)\] (resp-[v,u,u li’; V/\]) .

k

Then we have

1
§m,’)’,, if Wy, (resp. V,,) is of type M
A and W) (resp. V}) is of type Q,
(4.10) Moy = 2my, ,  if W, (resp. Vi) is of type Q
and W) (resp. V) is of type M,
m"),,, otherwise.

Proof. Using (4.5) and (C.2) we consider the multiplicities of the simple By, ® (U, ®

Un,Jrmodile W5 6 Uy in W IS8 and W | 51008l

Then, in the case of [W,, ,, 1B’°: W], the result (4.10) follows.
B 1B,

In the case of [V, li;;: V1], the result (4.10) similarly follows by using (4.7)
and (D.1). O

Let Hj be the subgroup of (BL)* generated by =1, 7', m,...,7k-1. Then H}
is a double cover (a central extension with a Z, kernel) of Hy. For a pair (k,v) of
partitions « and v, let w*" denote the element of H i defined by

respectively.

wrY =w1w2---w1wiwglz“°'wf/ (l:l(n),l':l(l/)),
Wi = Yat1Ya+2 " Yatri-1 (@ =K1+ + ki),
WS M1 Vo4 Vobm1Thpy, (0= |6l 4o i),

Note that the image of w* in Hy, is a representative of the conjugacy class of Hy,
indexed by (k,v). Let Ch[V) ,] denote the character of V,u, namely Ch(V, ,)(w) =
tr(wy, , ) for w € B} where wy, , denotes the action of w € Bj on Vau- Then
Ch[Viu](w™") = 0 unless (k,) € (OP?);, where (OP?); denotes the set of all
(k,v) € OP? such that ||+ |v| = k (OP denotes the odd partitions). We describe a
formula for the character values of simple B;.-modules. Define a map ¢: (DP?) e
Zy by e(A 1) =1 (resp. €(\, 1) = 0) if (A, ) € (DP)] (resp. (A, ) € (DP?)).

Corollary 4.4. We have
(4.11)
(=)+1(v K.V =1 AN)=l(p)=c(X,p
27 ez ypu(z,—y)= ) Ch[Vi ) (w™)2 : QA (2)Qu(v)

(A m)e(DP?),

for all (k,v) € (OP?);, where p.(z, y) (resp. p,(z,—y)) denotes the power sum
symmetric funCtion pn($1a$25 ceesY1,Y2, ... ) (resp. py($1,272, ceey YL, Y2, .. ) )
(cf. Appendiz, A).

Proof. By what we noted before Theorem 4.1, any Bj, ® (Uny @ Uy, )-submodule W’
of W can be regarded as a Bj,-module with a commuting polynomial representation
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9w of GL(ng,C) x GL(n;,C). Here we extend our notation in Theorem 4.1 to let
Ch[W’](z ® g) denote the trace tr(zw o Ow(g)) for z € B} and g € GL(n,,C) x
GL(ni,C), where zw denotes the action of z € By on w'.
! r € ~v e’ 2
For any ¢, ¢’ € Zj, we have W 2 Bt &(lUng By ) We'. Hence, for (k,v) € (OP?),

and E = diag(21,- -, TnosY1s- -2 Ym) € GL(n,C), we have
(4.12) Ch[W*] (w™” ® E) = 27" Ch[W]((1 ® w"") @ E)

where 1 ® w™" € C ® B, = By. Put k' = |s| and | = l(k). Then k — K =
|v|. Moreover put W' = VO and W" = VO —F . We have w* = w*%w®”,
where w*?® € B}, w®” € Bj,_;,. Define a representations of Bi: on W' (resp. a

representation of Bi_i on W) by the same manner as the representation ¥ of By,
in W. Then we have
(4.13)

Ch[W]((1®w™") ® E) = Ch[W'] (1 ® w™?) ® E) ChiW"] (1® w®") ® E).

The element 1@w"™? of By is a product of k' —! elements 1®v; = 19(%(7‘]'—1‘]'4_1)0']')
(cf. (3.3)). This product can be expressed in the following form:

k' =1
K 1 =
1@ uws? = (7_2-) X Z(a product of the 19(1’,,)) x 9(o ’¢)

where 6% = 192" g1, §i = Oat+10a+2---Oatv;—1 (a= E;____ll ;). Then the gk~
terms in the summation are conjugate to 9(c*?) in 9((Br)*). Therefore we have

Ch[W'] (1 @ w™?) ® E) = 2¥'~!(v2)~*' =) Ch[W’) (9(c™*) ® E)
= zb_z;ﬂpn(zla' «e3Tngs Y1, .- 'aynx)'

Put I’ = I(v). Similarly we have

Ch{W"] (1 @ w**) ® E) = 2+~ ~1'(v3) "=+~ CulW"](9(o"*") ® B)

k—k'41’
=277 Py(®1sener By —Ylo- > ~Uny)

where o'®” = glgh - g}, 9i = Ob410b42 - - Obtwi—1Tppy, (b= Ej';ll vj). By (4.12)
and (4.13), we have

Ch[We] (1@ w™") ® E)

4141

§E3i4 . .
={2 z pn(m17$27'"7y17y2a-")pll($la$2?-"3_y1>_y25--') if k is even,
272 pn(xl,xg,...,yl,yz,...)p,,(:z:l,:z:z,...,—yl,-—yz,...)ifkis odd.

By (4.6), Theorem B.1 and (B.1), we have
Ch[Va u 6 Un,u] (™" ® E)

PR .9 L N =iw) s i

_J Ch[Vy ) (w™")2 (A : {(A) Z(JQA(zl, cees T )Qu(Y1,--->Yny) I K is even,
—_—e (A, )= N)=1(p)+1 . .

Ch[V) u)(w"*¥)2 2 Qa(@1, -+ Tng)Qu¥1,- -+, Yn,) if k is odd.
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Since these hold for all ny and n;, the result follows. [

Let us mention a relationship between this formula and Stembridge’s formula (cf.
Theorem E). Define an algebra endomorphism ¢ of Q, ® Q, by «(fR1) = f(z,y) =
f(zlaxZa-'wylayZ:" ) and l’(l ® g) = g(m,—y) = g(mlax% <o YL, Y2, . )
Note that {Qx(z,y)Qu(z,—y) | (A\,u) € DP?} is a basis of Q, ® Qy (cf. [10,
Th. 7.1, Lem. 7.5]). It follows that ¢ is an automorphism, since t(Qxr(2)Qu(y) =
Qa(2,4)Qu(z, ~y). Moreover, since ¢(p,(z,4)) = 2p,(z) and 1(py (z, —)) = 2p, ()
for any odd r, it follows that the image of (4.11) under ¢ coincides with Stembridge’s
formula.

APPENDIX

A. Symmetric functions. Let A, denote the ring of the symmetric functions in
the variables z = {z1,z,,...} with coefficients in C; namely our A, is the scalar
extension of the A, in [6], which is Z-algebra, to C. Let 2, denote the subring of
A; generated by the power sums of odd degrees, namely the p.(z), r = 1,3,5,....
Then {px(z)|X € OP} is a basis of Q,, where p) = [Ii>1pr;. For A € DP,
let Qx(z) € A; denote Schur’s Q-function indexed by A (cf. [7], [9, §6]). Then
{Qx(z) | X € DP} is also a basis of Q.

B. Semisimple superalgebras. A Zy-graded algebra A, which is called a su-
peralgebra in this paper, is called simple if it does not have nontrivial Zy-graded
two-sided ideals. If A is a simple superalgebra, then it is either isomorphic to
M (m, n) (denoted by M (m|n) in [2]) for some m and n, or isomorphic to Q(n) for
some 7 (see [2], [13, §1] for the definitions of simple superalgebras M(m,n), Q(n)).

Let V be an A-module, namely a Z,-graded vector space V =V, ®V] together
with a representation p: A — End(V') satisfying p(Aa)Vs C Voyp (o, B € Zy). By
an A-submodule of V' we mean a Z,-graded p(A)-stable subspace of V. We say
that V is simple if it does not have nontrivial A-submodules.

Let V and W be two A-modules. Let Hom& (V, W) (a € Zy) denote the subspace
of Hom*(V, W) = {f € Hom(V,W); f (Vs) C Wayp} consisting of all elements f €
Hom®(V, W) such that f(av) = (=1)*Paf(v) for all a € Ap (B€Zy)andv € V.
Put Hom 4y (V, W) = Hom’, (V, W)@®Hom, (V, W) and put End, (V) = Hom , (V, V).
We call End (V) the supercentralizer of 4 in End(V). Two A-modules V and
W are called isomorphic if there exists an invertible linear map f € Hom (V, W).
If this is the case, we write V 24 W (or simply write V & W). If V and W are
simple A-modules, then V = W if and only if there exists an invertible element in
Hom (V, W) or Hom, (V, W). Note that, in [11] we distinguished between V and
the shift of V' which is defined to be the same vector space as V with the switched
grading. In this paper, however, we identify V and the shift of V.

IfV is a simple A-module, then End) (V) is isomorphic to either M (1,0)=Cor
Q(1) = Cy (cf. [1, Prop. 2.17), [2, Prop. 2.5, Cor. 2.6]). In the former (resp. latter)
case, we say that V is of type M (resp. of type Q)- This gives the following
theorem (see [1], [2], [11, §1] for the definition of the “supertensor product” of the
superalgebras or modules).

Theorem B.1. Let C = A® B be the supertensor product of superalgebras A and
B and let V =U @ W be the supertensor product of a simple A-module U and a
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simple B-module W.

(a) IfU, W are of type M, then V is a simple C-module of type M.

(b) If one of U and W 1s of type M and the other is of type Q, then V 1s a
simple C-module of type Q.

(c) If U and W are of type Q, then V is a sum of two copies of a stmple
C-module X of type M: V=X&X.

Moreover, the above construction gives all simple A ® B-modules.

Using the above U, W,V and X, define an A ® B-module U o W by

V if U or W is of type M,

(B.1) FeWs= {X if U and W are of type Q.

Let Irr A denote the set of all isomorphism classes of simple A-modules for any
superalgebra A.

Corollary B.2. We have a bijection

o: rAxIrrB 3 (U,W) & UoW € IrA® B.

C. Sergeev’s duality. We review Sergeev’s duality relation between B;, and Uy,
on the space W in Theorem 4.1. Define a map d: DP. — Zs by d()\) = 0 (resp.
d(X) = 1) if I(}) is even (resp. I(X) is odd).

Theorem C. [8] (1) The two superalgebras ¥(By) and Uy, act on W as mutual
supercentralizers of each other:

(C.1) Endé(un)(W) = ¥ (By), End;l,(gk)(W) = O(U,).

(2) The simple By-module W (A € DP) occurs in W if and only if I(X)) < n.
Then we have

IR

(C.2) =T P Wrols

AEDP;, I(M)<n

where Uy, denotes a simple Uy -module corresponding to Wy in W in the sense of
DSCT.
(3) The character values of Ch[U,] are given as follows:

d!A—lk
(C.3) Ch[U))(z1,Z2,---,%n) =27 2 Q1,895 55«3 %n)-

D. A duality of Ax and q(n). We established a duality relation between Aj and
U,, on the space W€ in Theorem 4.2.
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Theorem D. [11, Th. 4.1] The A ® U, -submodule W€ of W is decomposed as a
multiplicity-free sum of simple Ay ® U,-modules as follows :

AEDP;

(1) Assume that k is even. Then the simple Ar @ Uy,-modules Vy 6 Uy in W€ are
of type M. Furthermore we have

(D.2) Endoy,)(W¢) = ¥(4), Endy ) (W*) = OU,).

(2) Assume that k is odd. Then the simple A, @ U, -modules VioUy in W€ are
of type Q. Furthermore we have

(D.3) Ende(y,)(W®) = €1 ® ¥(Ax), Endy, 40 (W) =0 ® OU,).

E. Stembridge’s character formula for Bj.. We review Stembridge’s formula
for the character values of simple B,-modules , in a form adapted to the simple
modules in the Z,-graded sense.

Theorem E. (cf. [10, Lem. 7.5]) We have
3! l!x!+l!v ) PR —l!)«!—liu!—c!)\,u!
277 pe(@pu(y) = ) Ch[Vy )(w™) 2 : Qx(z,9)Qulz, —y)

(A,m)e(DP?),

f07‘ all (K'a l’) = (OPZ)I:: where Q/\(z’y) = Q,\(Zlil,xz,... 7y17y27"') and Q#(xa —y)
=Q#(zl,xz,...,—yl,—yz,...).
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