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Abstract

Plethysm of two Schur functions can be expressed as a sum of Schur functions with
nonnegative iuteger coefficients. Recently, a new algorithm has been developed to
compute the coefficients individuaUy. Knowing the first non-zero term (the largest term
under the reverse lexicographic ordering of partitions) iu the expansion will significantly
speed up calculations. la this paper, we show that by using combinatorial properties
of nested inverse Kostka numbers, we are able to obtain some general results regarding
the first term. In a lot of cases, the first term can be easily found, and the coefficient
turns out to be unity. We also give some results on the last term.

Resume

Le plethysme de deux fonctions de Schur peut s'exprimer comme somme de fonct ions
de Schur a coefficients entiers. Recemment, un nouvel algorithme a ete developp^
pour calculer chaque coefficient. Le fait de connaitre Ie premier terme non nul du
developpement (premier au sens de 1'ordre lexicographique inverse des partitions) per-
mettrait d'accelerer de fa^on significative les calculs. Dans cette communication nous
montrons que 1'utilisation des inverses emboites des nombres de Kostka, nous permet
d'obtenir des resultats generaux sur ce premier terme. Dans de nombreux cas, U est
calculable et s'avere etre egal a 1'unite. Nous donnons egalement des resulats sur Ie
deruier terme.

1 Introduction

Throughout this paper, by partition, we mean a non-decreasing sequence of non-negative
integers. The common notation ̂ , |A|, and X' are used for the length, weight, and conjugate
of a partition A, respectively, and \1^ denotes the skew partition. We often use a^ with
i = 1, 2, .. . , A; to denote a sequence of k partitions. For two partitions A and ̂  of the
same length & (add some initial zeros if necessary) we say ̂  is lexicographically smaller
than ju and write fJ. <^c -^ if the first non-zero diflFerence A^_, - fie-i forz = 0, 1, - -. ^- 1 is
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positive. Given two Schur functions sj, {x) and s^x) where x = (x^, x^ . . . ), the plethysm
s\[s^x)] can be expanded as s^[s^x)} = ^c^s^(x) where 7 is a partition of weight
|A| + |^| and c^ is a nonnegative integer [5]. For simplicity, we will omit x and just write
s\ for S), (x~). Define the first term in the expansion to be a partition ̂ -r such that c^^ -^ 0
and 7 <LC 7?T for all 7 with Cy ̂  0. The /ast term 7^ is similarly defined and satisfies
7LT <LC 7- For instance, in the expansion S(i,2)[5(2)] = S(^ + S(2,4) + 5(i, 2,3) the first term
is 7pT = (1, 5), and the last term is 7^ = (1, 2, 3).

Plethysm was introduced by Littlewood [4] more than half a century ago in connection
with the representation theory of matrix groups. (s^[s^} = {/u} ® {X} in Littlewood's no-
tation. ) Although there exist several algorithms [2] for the expansion, actual computation
is still a formidable task for large weights due to the fact that the number of partitions 7
increases dramatically as the weights |A| and |^| increase. Recently, a new algorithm has
been developed [7] which computes the coefficients CA one at a time. Unlike the traditional
method, it does not explicitly involve product of Schur functions and therefore, does not
require searching/sorting which demands large computer memory space. In using this
new algorithm for the expansion, it will save us time if we can predict the zero coefficients
in advance. In particular, it is useful to know the first and the last term in the expansion
since only the terms between them may have non-zero coefficients.

The starting point of this paper is the formula for c^ which was obtained [7] by using
orthogonality and transition matrices of symmetric functions. Let < F, s^, > denote
coefficient of s^ in the expansion of a syrametric function F. The coefficient c^ of s^ in
the expansion of s\[s^\ is

< SA[S^], S7 >= S^f Z^ L[-F^, a(')^v7 ;<7iaW ,020(2) ,..., ^a(<<r),
^|A| "<T a(l).Q(2),....a(<<')^=l

(1)

where ̂  is the character of the syrametric group, ^ is the number of permutations
of cycle type a given by ^ = n,->i ?"i(^n<(<7)! with n, (o-) being the number of parts
of a equal to z, K^V) is the Kostka number, a^ is a partition of weight \p\ for 1 <
i ^ £ff, and -?V-y;o-ia(i)^Q:(2),..., o-<ct(^) ls the nested inverse Kostka num&er of shape 7, type
o-io'(l\ cTsa^2), . . ., ^ct^\ Our main results are obtained by using the combinatorial prop-

erties of the nested inverse Kostka numbers which we will briefly review in Section 2. We
also need the following two results. The first one is the conjugate relation of plethysra [5]:

<., [., ], 5, >= ^ < s^'}: ^> if i^!is evenl

< s\'[s^s^, > if \fi\ is odd. (2)
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The second result concerns with the sum of ̂  where z^ is as defined earlier. It is known
that Schur function s^x) can be expressed in terms of the power sum symmetric function
p^{x) via s^x) = E^n ̂P.W- If we put 3; = (1, 0, 0,..., ), then p^x) = 1 for aiiy a
and s^x) =1 if^ = 1, s^x) =0 if^ > 1. It follows that

1 if ^=1 (3)
<r\-n

In the special case when A = (I"), we have x(^n) = (-l)l'Th£ff = ^ and

^ ̂ - = 0 for n > 1. (4)
o^n za

The arrangement of the paper is as follows. In Section 2, we review properties of
nested inverse Koska numbers. In Section 3 and 4, we give results on the first and last
term. In Section 5, we list some open problems.

2 Properties of the Nested Inverse Kostka numbers
The nested inverse Kostka number N^.^w^w^aW of shape 7, type a(-}-\a(
generalization of the inverse Kostka number K^) and is defined by

,(2) . - a^ is a

N^aW,aW,...,aW = S ![ Ka^,'f(-l'>/f(i
^(l)^(2),... ^(()t=l

.) (5)

where the summation is over all sequences of nested partitions 7 = 7(0) D 7(1) ̂  7(2) ^
... D 7<£) = 0 satisfying \^i-l)/^\ = \a^\ for 1 ^z ^^. To compute N^w^w^^w
combinatorially, we divide the shape 7 into f. segments and fill each segment ̂ -^/^W
with special rim hooks of type a(-t\ Briefly speaking, a rim hook (or boundary strip) of
^(i-t)^(i) ^ called special if it starts from the North-Westem comer cell of the Ferrers
diagram of7(t-l)/7(t). The type of the rim hooks used in the filling is the partition obtained
when we order the hook lengths in non-decreasing order. Since the filling of each segment
^-i)/^') with special rim hooks of lengths aw ,a^\-.. , a^ is called a special rim
hook tabloid of shape ̂ t-1)/^ and type a^ (cf. [3]), we will call the complete filling
H of 7, which contains £ segments, a nested special rim hook tabloid of shape 7, type
o;(i) o;(2) .. o;W. The row-sign ̂ (Jf) of the filling H is defined as

^rW = H ^(^-) with ^(^) = (-i)r(/it)-l-
A,eff

(6)
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where r(/i, ) is the number of rows overed by the hook hi. Finally,

Nr,aWftW,..., aW = ^^(H),
H

(7)

summed over all possible fillings H of the given shape and type.
Originally [7], nested inverse Kostka number N^(I)^) w is obtained as the coef-

ficient of s^ in the expansion of product of £ copies of monomial symmetric functions
ma(l)ma(2) . . - m^(Q, where a^ for z = 1, 2,... , ^ are partitions. Because the product is
commutative, N^I)^)^^(I) is invariant under permutations of partitions aw, a(2\ . - ., aw.
It is easy to see either algebraically or combinatorially, that N w ^ ^ is related to
character of the symmetric group, the Kostka number and the inveise Kostka number as
follows.

(a) when each a^ has only one part, say a^ = (a, ) for 1 <i <, £,

A^,. (ai), (a2), (^) = XL

(b) when o'(i) = (la') for 1 ^i ̂  £,

^7;(lai), (la2),..., (l^) = A"y,a,

(c) when a^ = a, and a^ =0for2 ̂  ? <^,

N^w = Kâ,7

(8)

(9)

(10)

where o; = {a^a^-. . ,ae). Nested inverse Kostka number N^W^)_^) can be com-
puted by successively subtracting partitions a(l), a<2),..., a(-i\ from the bubble sequence
B7 = (0 + 7i, l + 72, ---, ^~ 1 + 7^) in certain ways (cf. [7]). The algorithm has been
implemented on computer.

3 Results on the First Terms

Theorem 3. 1 If < s^[s^ s^ >^ 0, then 7 satisfies

and

7 <LC  ,

7/ ̂ c W.

(11)

(12)

602



Proof. Suppose < s^s^s^ >^ 0. By (1), there exist some partitions a and a(~l\ Qi(2), . . ., a^
such that N,.̂ w^w,..,^^ + 0 and K,^ ^Ofor 1 ^ ^ ^. It is a known property
of the Kostka number [5] that

if ^,, (.)^0, then, a(!) <i.c/^. (13)

Let orri(7(2-l)/7(t)) denote the partition obtained by rearranging the rows of the Ferrers
diagram of ̂ i-1)/^ in non-decreasing order. For instance, ord(1446/125) = (1123). It
follows from the combinatorial definition of the inverse Kostka number that

if ^,,, -.)/,, )^0, then, or<7(t-l)/7(2)) ^c ̂ ). (14)

since for a fixed partition 0(i\ the lexicographically largest possible shape 07-d(7(t-l)/7(t))
is obtained when we lay all special rim hooks of lengths 6W ,0^\ . . ., ^) one below another
horizontally. Define the sum \+^ of two partitions of the same length as the vector sum.
If they are of different lengths, add some initial zeros. For instance, (1, 2) + (1, 1, 1, 4) =
(0, 0, 1, 2)+(1, 1, 1, 4) = (1, 1, 2, 6). It is easy to see that the linear ordering ̂ LC is preserved
under addition and scalar multiplication. That is, if A ^c ̂  o- ̂ LC r, and fc > 0, then

A+0- ^LC /^ +T1 and kx ̂ LC ^^- (15)

Using (15) together with (14) and (13) we see that if Ary., <Tia(i), ^Q(2), -,^a<^) 1- ° and
^, a(. ) ^ 0. then

7 ^LC Eor<7(1-l)/7°')) since 7(t-l)/7(2) ^LC or<7('-l)/7(t))
2=1

^LC E^^') by (14), with ̂  = <7<a(t)
t=l

^LC E<^^ by (13)
1=1

\a\fJ,
\\\p,, since \a\ = |A|,

and the proof of (11) is completed. Now, by combining the above result with the conjugate
relation (2) and using the fact that |A| = |Y|, we have 7' ̂ c \>\{J-'- D

Example 3. 2 Consider the non-zero terms s^ in S(i,2)[s(i, 3,4)l. Here A = (1, 2), |A| =
3, /u = (1, 3, 4) and p! = (1, 2, 2, 3). By Theorem 3. 1, 7 is a partition of 24 satisfying
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7 <LC 3(1, 3, 4) = (3, 9, 12) and Y ^ 3(1, 2, 2, 3) == (3, 6, 6, 9). Let P[n, A} denote the
number of partitions 7 of n satisfying condition A. We find by recursive method and
generating functions that P[24, 7 ^c (3, 9, 12) and -j' ̂ c (3, 6, 6, 9)] = 837. So, only 837
terms out of the P[24] = 1575 partitions of 24 may have non-zero coef&cients. Actual
calculations produce only 743 terms with non-zero coefficients.

Looking at Theorem (3. 1), one might expect 7^7 to be \\\p.. However, this is only true
if A has one part. For convenience, let SAI^^JF T denote the first term 7pT in the plethysm
sx[s^.

Theorem 3. 3 The coefficient of s\\\^ in the plethysm s\[s^] is

1 if ^=1<^l-s >=1o ;f ll'i,
and

sx[s^} FT
=|A|^ if ^=1
<Lc|A|/^ if £>>!.

(16)

(17)

Proof. It follows from the proof of Theorem 3. 1 that N^.̂ ^1)^^(2)^... ^ a^) ^ 0 iff
Q;(l) = /J, for z = 1, 2, - . . ,^. This is because each segment 'y(2-l)/'y(2') of |A|^ can be filled
only by using the longest hooks allowed, namely, hooks of type o-, ^ by (13), and all hooks
must be laid horizontally one below another. Since the row-sign of a horizontal hook is,
by (6), +1 and we have just one filling H of \\\p, possible for any cr, it follows

N[X[^^a^, -^^ = ^r(H) = 1 for any a.

We also know that K^^ == 1. Thus, it follows from (1) that

(18)

x
A ^

<sx[s^, s^> == ^ 7°-n ̂ ^VIAI^^, ^^,..., ^^
^\\\ ^ 1=1

^̂|A| ^

1 if ^= 1
0 if ^> 1 by (3).

(17) follows immediately from Theorem 3. 1 and (16). D
As a special case of Theorem 3. 3, we have Snt^mlp T = (nm) with coefficient of the

first term being unity. This result can be proved (cf. [6]) using elementary representation
theory of the symmetric group. For t\ > 1, we have the following theorem.
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Theorein 3.4 Suppose i\> 1. The the first term 7pT in s\[s^] is

7FT = 7-FT U |A|^, (19)

where Tp-r is the first term in s\[s(^)], and (id = (/^2, /^3, . - . i^)- Further, the coefficient
of s-^.^. satisfies

< s>[s^s^T. >=< ̂ [s(^)]. sn-T > . (20).

By this theorem, 7pT is obtained simply by multiplying each, except the first, of the rows
of ̂  by a factor of | A | and add Tp-r on the top.
Proof: By Theorem 3. 3, 7pT <LC ^|/^ since £\ > 1. Let us assume the form of the first
term to be

7pT = T U |A|^ = (r, |A|/,2, |A|^, . . ., |A|^), (21)
where r is some partition of weight A /^i. When we use (1) to compute the coefficient, in
order for N^^^m^^)^.. ^^w ^ 0, we have to fill each segment ̂ !-^/^ of ̂ T with
special rim hooks of type ai0i^\ with a^ ̂ c p. by (13). It is crucial to note that in this
case, each segment 'y(t-l)/'y(t) decomposes into two parts, one is contained in r, the other
in |A|^d, and the two parts are filled disjointly. Exactly like the filling of \\\p, discussed in
the proof of Theorem 3. 3 , the \\\fJid part of ̂ ''~l)/^i) is filled uniquely using the longest
hooks possible, i. e. hooks of type o-;/^d, and all hooks must be laid horizontally one below
another, as shown in Figure 1. The r part of ̂ i~l^/^i) (if is is not empty) can be filled
with special rim hooks of type o-i/3^ for some partition ]3^ I- /^i. It is impossible for any
special rim hook to start from the r part and reach the |A|^d part since it is not long
enough. (More precisely, the longer hooks have to be used to fill |A|//d part of the segment
7/7 an(^ only shorter hooks are available to fill the r part of the segment.)

Wrc

lAl^partof ^(<-1)/^), , ('-1)/, (0,... ^1)^(2),... ^(°)^(1)

Thus, we have for 1 ^ 2 ^^,
a

Figure 1.

:t)=/?(I)U^ (22)
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where /?0) is some partition of/^i. By (21) and (22),

'{FT;tTiaW,ff'2aW-,a'ty^ta^

= NrU\\\^m(13W\J^), a^/3W^), -,^(P^')U^)
= Nr-^/3W, ^/3m, -,^0WNW^;^d, ^d, -,^^d
= Nr;^pW, ^m, -,at^W-

where N^^.^^^^,.. ^^ = 1 by (18). We also have

K^.) = K^(i)^a by (22)
= K^^,)K^^

K...

(23)
(24)
(25)
(26)

(27)
(28)
(29)L^,/3<*)

since K^d^d =1. So, it follows from (1) (26) and (29)that

-a

<SA^], S^T> = ^E - Y. n^i, ^')NT ;^w, ^m,..., ^^(^)
at-\\\ ^ /3(i), /3(2),..., /3^^i<=l

= <S>[s^)}, Sr>

and 7pT is the first tenn in s\[s^] iff T is the first term A in s^[s^, )]. D
In Section 5, we will give a conjecture for 5^[s^J which is yet to be proved. However,

in the special case when /KI = (1) we know that SA[5(i)]pT = ^i since 5^[s(i)] = s\ which
contains one term only. Thus, when ^/i = 1, ̂ ^Is^jn. can be found by Theorem 3. 4.

CoroUary 3. 5 When fi = (l, ^d) = (1, ^2, ^3, . -. , ^),

SA[S(I,^)]FT=AU|A|^

with coefficient

< SA[S(I,^)], STU]A|^ >=
1 ifr=\
0 otherwise.

(30)

(31)

Example 3. 6 Consider the first term in S(2, 3)[s(i^, 4)]. Here A = (2, 3), |A[ = 5, /^ =
(1, 3, 4), and pd = (3, 4). So, by Corollary 3. 5, we have

5(2, 3)hi, 3, 4)]FT = (2, 3) U 5(3, 4) = (2, 3) U (15, 20) = (2, 3, 15, 20)
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and

< S(2,3)[«(l, 3,4)], S(r, 15,20) >=
1 if T= (2, 3)
0 otherwise.

(32)

Combining the above result with (12), we see that aiiy term 7 which does not satisfy
both 7 ^c (2, 3, 15, 20) and 7' ̂ LC (I5, 35, 45) will have zero coefficient in the expansion
of S(2, 3)[s(i, 3,4)]. For instance, the coefficient of 5(4, 16,20) in the expansion is zero since
(4, 16, 20)>Lc(2, 3, 15, 20).

As special cases of Corollary (3. 5), we have

5Ahl -)]pT = AU(|A|rn-1)
5(ln)[S(lm)]FT = (I", "7"" )

Sn[S(l">)]pT = (" )

and the coefficient of the first term in each case is unity. Further, we have

1 if T= A

(33)
(34)
(35)

and

<^[^)], ^U(|A|-)>=<J Q ^herwise,

1 ifT=(l")<s(ln)^lm)LS (T'"m-l)>=1 0 otherwise;

1 ifr=(n)
<^h^sr^m-^>=\ Q otherwise.

(36)

(37)

(38)

4 Some Results on the Last Terms

The last term 7^ of the plethysm s^Sp] is not, in general, equal to the conjugate 7^ of
the first term 7^. of the plethysm. This is due to the fact that although it is true that in
most cases

if K^c7, then 7'^LC K/, (39)
the above relation is not always tme. For instaiice, (32) ̂ c (12, 4), but the conjugates
(23) ̂ LC (I3, 3). We note, however, that if partition K can not be fit inside the (^ - 1) by
(^' - 1) rectangulai box, for instaiice, if \K\ > (^ - 1)(^' - 1)' then (39) wm be true-
We have the following proposition.
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Proposition 4. 1 Let 7 and K be partitions of the same weight and K <^c 7. If \-y\ >
(^-1)(^-1), then^'^^K'.

Let 7 be the first term in s^[s^, } if |^| is even, the first term in Sx'[s^} if |/^| is odd. If 7
satisfies condition in Proposition 4. 1, then the last term 7^ in s^[s^] can indeed be found
by taking the conjugate of 7. The following theorem follows directly from the conjugate
relation (2), Theorem 3. 4 and Proposition 4. 1.

Theorem 4.2 Let T be the first term in s^[s^\ if |ju| is even, the first term in s^s^}
if |^| is odd, where ̂  is the first part in the conjugate partition ^ of {i. Further let
7 = r U |A|^, where ̂  = (^, ̂ 3,..., ̂ ). J/ |-y| > (^ _ i)(^, _ i)^ ̂ ^ ̂  ^^ ̂ ^
SA^^JL T ?" < SA^], ^^ > is V. That is,

^MLT = (r U |A|^y = r'+(|A|^)

and the coefficient

< ^[^], ̂  >= <! < sx^:ST > ^ 1^1 is even
< s>'[SWi)}^ sr > tf l/^l is odd.

(40)

(41)

Note that 7^ here is obtained simply by multiplying each, except the last, of the columns
of /^ by a factor of |A| and append T/ on the right.

Example 4.3 Consider the last term 7^ in S(i,2)[s(3, 4)]. Here A = (1, 2), /u = (3, 4), A' =
(1, 2), ̂  = (1, 2, 2, 2), ^ = 1, aad ̂  = (2, 2, 2). By the Theorem (4. 2),

T=5(l, 2)MpT=(l, 2)
and

7 = (1, 2) U 3(2, 2, 2)= (1, 2) U (6, 6, 6) =(1, 2, 6, 6, 6).
Since |7| = |A||/, | = 21 > (^ - 1)(^, - 1) = (5- 1)(6 - 1) = 20, we have

7LT=7/=(34, 4, 5).

Theorem 4.4 Let s^e" = SA m</i |A| &em^ an even number, and s^d = s^ with \\\ being
a odd number, respectively. Then,

^(") ")]LT = (mfcn) (42)
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^(I»)W)LT = (^) (43)

with coefficient of the last term in both cases being unity.

Before giving the proof we remark that for the opposite parity, we can show by (1) and
(4)that

<5(n)[^)], S(^")> = 0
<S(l»)[^T)], 5(^n)> = 0

and the last terms are more difficult to find (see [1] for a conjecture).
Proof. For both (42) and (43), we have |A| = n, ^ = (mk}^' == {km},^

id 
^ (fem -i^ gy Theorem (4. 2) we have

(44)
(45)

= k and

T = 5n[Sfc]pT = (^"),

and
7=(fcn)Un(fcm -l)=((A;n)m).

Clearly, the weight |7| = fcmn is bigger than (^-1)(^-1) = (m-l)(fcn-l) and thus by
Theorem 4.2, 7LT = 7/ = (mfcn) with coefficient of 7^ being equal to < S(n)[s(fc)], S(fcn) >=
1. D

5 Open Problems

In [1] Agaoka has given several conjectures regarding the first ajid last term. Most con-
jectures on the first term have been proved in this paper, except one which we will state
below.

Conjecture 5. 1 Let \ be a partition of length £.

Sxhm)}^ = (Al, A2, - . . , A^-l, |A|m - (Ai +A2+ ... + A,_i))

and when \ = (ln),
S(l")[s(m)]FT = (1"~\ mn-n+1)

with coefficient of the first term being unity.

(46)

(47)
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We know that (46) is true for^^ = 1 orm= 1. To prove (47), we have by Theorem
3. 1 that 7 ^LC (wi") and 7' ̂ i, c (nm). So, 7^7 has at most n rows. It has been proved [6]
that for 1 < a^n,

< S(ln)[s(m)], S(ia-l^n_o+i) >=
0

if a = n

otherwise
(48)

which can also be proved using the method of this paper by establishing a one-one mapping
between the nested inverse Kostka number of a hook shape and a single-row shape. To
complete the the proof of (47), it remains to show that < S(in)[s(m)], S(r, mn-n+i) >= 0
if T is not a single column. The difficulty lies in the fact that in this case, the filling of
7 = (r, mn - n + 1) is not unique, and there are a lot of cancellations.

The coefficient of the last term is generally not unity and finding the last term is a
much more difficult problem. In [1] explicit fonn of 7^. in some special cases have been
conjectured.

References

[1] Yoshio Agaoka, Combinatorial Conjectures on the Range of Young diagrams appear-
ing in Plethysms, Technical Report No. 59, Hiroshima University, 1998.

[2] Y.M. Chen, A.M. Garsia and J.B. Remmel, Algorithms for Plethysm, Contemp.
Math. 34 (1984) 109-153.

[3] 0. Egecioglu and J.B. Remmel, A Combinatorial Interpretation of the Inverse Kostka
Matrix, Lin. and Multi. Lin. Alg. 26 (1990) 59-84.

[4] D. E. Littlewood, Theory of Group Characters 2nd Edition (Oxford University Press,
Oxford, 1950).

[5] I. G. Macdonald, Symmetric Functions and Hall Polynomials (Clarendon Press, Ox-
ford, 1995).

[6] S. H. Weintraub, Some observations on Plethysm, J. Algebra 129 (1990) 103-114.

[7] M. Yang, An Algorithm for Computing Plethysm Coefficients^ Disc. Math. 180 (1998)
391-402.

610


