
A Macdonald vertex operator and standard tableaux
statistics for the two-column (q, ̂ )-Kostka coefficients

Mike Zabrocki
Centre de Recherche Mathematiques, Universite

de Montreal/LaCIM, Universite du Quebec a Montreal
email: zabrocki@math. uqam. ca

Abstract

On donnera une formule pour 1'operateur H^ avec la propriete que H^ H^a^) [X; q, t\ =
ff(2a+iib)[X; g, f] aveclesfonctions symetriques^JX; g, t] = E^ A'A^(9' f)_SA[x^ L'oper-
ateur donne une methode pour creer les tableaux standards de longueur n+2 a. par-
tir des tableaux standards de longueur n et les statistiques a^(T) et b^(T) tel que
Hiy^[X;q, t] = ^ta(2ali')(r)g6(2alt>)('r)s^(T)[X] ou Ie somme est sur les tableaux stan-
dards.

We present a formula for a symmetric function operator with the property that
H^H(^b)[X;q, t\= H^a+^)[X;qt] with the symmetncfunctionsff^x;9'^-^
^^K^(q, t)s), [X]. The operator gives a method for building the standard tableaux of
size n+2 from the tableaux of size n and statistics a^a^T) and b^a^)(T) such that
H(y^[X;q, t] = ^ta(2alb)(T)1b{2alb)(T)s>(T)W where the sum is over all T standard
tableaux.

1 The Vertex Operator
The Macdonald basis for the symmetric functions generalizes many other bases by specia-
lizing the values of t and q. The symmetric function basis {P^X;q, t}}^ is defined by the
following two conditions

a) P>=sx+^s^c^(q, t)
p.o
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&)(PA, P^=O for >^^
where (. }gi denotes the scalar product of symmetric functions defined on the power

symmetric functions by {p^P,},, = ^A n^, <^) ̂ - (z, is the size of the stabilizer of the
permutations of cycle structure A and 8^y =~l~d x =y and 0 otherwise). We also introduce
the scalar product { ), defined by {pA, ^}, = S^z^ TI\^^) -^.

The integral form of the basis is defined by setting J^;'^, t] = P^[X; q, t] T[^(l -
^"(s)^"(s)+l) (5   ̂ means run over all cells sm^ and (z^5) and Z^^) are the arm and leg
of 6 in ̂  respectively). The {J^[X;q, t]}, are used to define the (9, 7)-kostka-coefficients^

K^[q, t)={J, [X;q^s^X}\

These coefficients are known to be polynomials and conjectured to have non-negative integer
coefficients. It is known that A'^(l, 1) = ^ = the number of standard tableaux of "shapFA
and so it is conjectured that these coefficients (9, t) count these standard tableaux.

We will also refer to the basis H^[X;q, t} = E, /<^(g, <)^[Jf] that is of interest in this
paper as Macdonald symmetric functions. They have the specializations that H^[X;0, t] =
H^''tlr ^^ ?^]L~Llt, tl^?od basis of symmetric functions defined below), ^[X; 0, 0] =
s^X], H^X-, 0^1} = h^[X], and the property that H^[X;q, t] = qn^tn^ujHjx;:
where ^)=^. ^-1^, and ^[X;-9, <]=^^[X;C9 ].

'" J -x ' 

~""l"''/"-

The Hall-Littlewood symmetric functions H^[X;t\ can be defined by the followii
formula.

H^x^= n - n J-^/iLi
_ ^^^ -A. A '] _

i^O, Kj<k 1 - ZjXi
Ki<j<k tZjlzi z^

where // is a partition with k parts and
Zv-

represents taking the coefficient of the monomial
^1 ^t . . . ^k^'z'^- . .. z^".

These symmetric functions are not the same, but are related to the symmetric func-
tions referred to as Hall-Littlewood polynomials in [13] p. 208. The Hall-Littlewood func-
tions are related to the Schur symmetric functions by letting < ^ 0 and to the homogeneous
symmetric functions by letting < -> 1.

For each of the homogeneous, Schur, and Hall-Littlewood symmetric functions there
are vertex operajors with the^property that for m ^ ^ h^[X} = h(^)[X], S^s^X] =
5(m, /. )[^], and H^H^[X, t\-= ^(m, ^)[^, <] where (m, ^) represents the partition (m, ,, 1, ^2,
... ̂ k)- These are each given by the following formulas:

i} h^=h^[X} n) Sm=^(-lYh^[X]ef- m) H^
i>0

=E^^'
j>0

^
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where f^ denotes the adjoint to multiplication for a symmetric function / with respect
to the standard inner product.

" 

Therefore {fLg, h} = {g, fh}. Note that h], and e^ act on

the Schur function basis with the formulas

eksP- = ^ s\ hfs,, = £ s\

^/AGV* ^/> -Hk

where the first sum is over all A partitions of ]^| - fc that differ from ̂  by a vertical strip
and the second sum is over all partitions that differ from ̂  by removing a horizontal k strip.

The vertex operator of formula for the Hall-Littlewood polynomials is due to Jing
([5], [3]). The Schur function vertex operator is due to Bernstein [13] (p. 96). The action of
each of these operators on the Schur basis is known ([15]). It is hopeful that a similar vertex
operator, ^/can be found for the H^[X;q, t} symmetric functions and the action on the
Schur basis can be expressed easily (although in general it may not have any relation to the
formulas for the other vertex operators).

In the case that m = 2, an operator that adds a row of size 2 to the H^[X; q, t] can be
expressed in terms of the Hall-Littlewood vertex operator and the first theorem we present
IS

Theorem 1.1 Let i
H^ = ^ + q^H^Rt

where Rt is an operator with the property that Rtf = tdes^f fora homogeneous symmetnc
function f. This operator has the property that HfH^a^X^. t} = H(y+i^)[X;q, t}.

This theorem follows from a formula by John Stembridge [12] that gives an expres-
sion for the Macdonald polynomial indexed by a shape with two columns in terms of Hall^
Littlewood polynomials. 'Susanna Fischel [2] has already used the Stembridge result^to find
statistics on rigged configurations that are known to be isomorphic to standard tableaux.
It would be better to have these statistics directly for standard tableau since the bljection
between standard tableau and rigged configurations^s not trivial ([7], [8], [4]).

For the remainder of this paper the symbol ̂ LJ will represent the expressio^ ̂ H^uRt

and the symbol iff^ will represent the operator H^ so that H^ =
For integers n ^ 0, define

(a;^=(l-a)(l-^)... (l-^ .n-1
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In Theorem 1. 1 of [12], an expansion of the 2-column Macdonald polynomials in terms of
the Hall-Littlewood polynomials is given as

H^^x-^t} = ^^(^^-i), ^r^^^^_, ^^^"(ti;t-

This result along with the following lemmas and algebraic manipulation, is used to
prove that the H^ operator has the vertex operator property.
Lemma 1.2

Lemma 1.3

=tl

'1^H^^[X, t} = taH^^[X; t] - ta+b+lH(^^[X; t]
^ One result that follows from 1. 1 is that the H,[X; q, t\ when ̂  = (2al6) has an unusual

breakdown into 'atoms' as in the following formula.
Corollary 1.4

H^^[X-^^= ^

where

.. {[
cofn^]) = 0 anrf co (^) = 1.

H^H^... H^H^[X;t]q^ co(s;:

It is interesting that^the symmetric functions H^ H^2 . . . H^H^[X;t] have coeffi-
dents that are polynomials in t with non-negative integer coefficients when expanded in the
Schur basis (Schur positive). This will be the main result of the next section and we will
refer to these as the atoms of the symmetric functions H(y^[X; q, t\.

Because of the relation from Lemma 1.2, for ̂ i co\Si)= k we have that

HS, Hy-.. HŜ H^[X;t}=t1 {^H^[X;t} (1. 1)

for some x^O where the H^ occurs^a - k times and ̂ UJ occurs ̂  times. Therefore all

atoms with exactly k occurrences of H^ are equal up to a factor of t. In fact we may derive
the following identity.
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Corollary 1.5

H(y^)[X;q, t}=Y^
2=0

a

I
{H^r-\HW)iH^)[X;t]qt

where
n -I 

_ 

(r;r1 ).
[k\, ~~'(^t^

This corollary can be used to recover the atoms of H(y^)[X; q, t] from the symmetric
function, for it says that the coefficient of qk will be a ^-binomial coefficient multiplied by
the atom Indexed by (lll2f2 -fc,|

2 Statistics on standard tableaux

One advantage of having the formula H^ is that it provides fast methods for computing
(g^)-Kostka coefficients, but our main purpose for finding the vertex operator H^ and its
action on the Schur function basis is to use it to discover statistics a^T) and b^T) on
st'andard~tableau-so that K\^t) = ET^ST^^^^- If these statistics exist, then the

famFyof symmetric functions'{^[X^^]L can be thought of as^genCTating functions for
the standard tableaux in the sense th&t H^X;q, t} = EreSTW^ )ttt( )S>(TW\

The vertex operator property has the combinatonal interpretation that H^ changes
the generating function for the standard tableaux of size n to the generating function for
the standard tableaux of size n+m. Knowing the action of H^ on the Schur function basis
gives a description of how the shape of the tableau changes when a block of size m is added.

In the case of m = 2, the action of H^ (and ujH^Rt and hence ffj*) on the Schur
function basis is well understood. The operator H^ can be interpreted as instructions for
building the standard tableaux of size n+2 from the standard tableaux of size n.̂ A tableaux
operator can be defined and used to build tableaux of larger content from smaller and state
explicitly how cancellation of any negative terms in the expression H^H^a^[X;q, t\ =
H(^^)[X;q, t} occurs. This operator suggests that the standard tableaux are divided into
subclasses of tableaux and that each subclass is represented by the atoms H(y^)[X; q, t}.

Let T be a standard tableau of size larger than 1. Either the cell labeled by 2 lies to
the right of 1 or directly above. If 2 lies to the right then let V(T) = [DZ]. If the 2 lies above
then let V{T) = ^.
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Define an operator H^1 on the standard tableaux of size n and maps this space to
the standard tableaux of size n - 2 by the following procedure:

1. If V(T} = [TVZ\ then let Ri be the first row of T and T be T with the first row
removed. Column insert the cells of J?i that are not 1 or 2 into T from largest to smallest
and decrease each label by 2 in this new tableau. The result will be ~H. y T.

2. If V{T) = tf| then let Ci be the first column of T and let T be T with the first
column removed. Row insert the cells of Ci that are not 1 or 2 into T from largest to smallest
and decrease by 2 each of the labels of the cells in this new tableau. The result will be H;-IT'

Example 2. 1 There are two cases in this procedure but the action is the same in both cases.
The cells are separated into left and right of ̂\ or 11121, the two groups switch places and the
1 and 2 are removed.

H,-1
3151

71 -4- -^

H,-1
Bl

-^
S]

->.
51

This operator will be used to define the type of a standard tableau.
Let ̂  = (2al6). Let T be a standard tableau of size 2a+6. The fi-type will represent

the orientation of the building blocks of the standard tableau. It will be represented by
the symbol type^T) and be defined as the tuple of standard tableaux of size 1 or 2 with the
following properties:

. Ifa= 0 and^ = (li>) then type^T) = ([T]6).

. If a = 1 then type^T} = {V{T), ^).

. If a > 1 then type^^T) = (V{T), type^-^^lT}).
This type Is used to define the statistics on standard tableaux. Let T   ST2cl+b and

let ^ be a partition with two columns with ^ = (2al ). We will let the statistic ^(T) on
standard tableaux be the number of occurrences of ̂  in the type^{T). Let the statistic
a^(T) be defined recursively with a base case ofa = 0 so that a^b)(T) = c(T). For a > 0 let
a^T) = a^(H2-lr) + (A(T)i - 2) if type^T), = [m] and a^T) = ^. (H^-^) + ]A(r)c| if
type^(T}\ = \^\ where A(T)C is the shape of the tableau T with the first column removed.

The a^ statistic is related to the charge statistic of a standard tableau that was
introduced by Lascoux and Schutzenberger. An index is given to each letter in the word.
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The index 0 is assigned to 1. If the letter i has index k then the index of the lette r i + 1 is

fcTfz"+ 1 lies to the left of i and the index [s k+1 \ii+1 lies to the right of i. The charge
of the word is defined to be the sum of the indices.

Example 2. 2 Let w = 638152479 then the index for each letter is given by J^|^ and the
charge o/w^ 2+1+3+0+2+1+2+3+4= 18.

The charge and the a^T) statistic are related by the following proposition.

Proposition 2. 3 Let n=2a+b. The statistic a^T) where ̂  = (2alfc) satisfies the formula
a

a,{T) = c(T) - ^((n + 1) - 2i)x(type, {n = [TSI)
2=1

where we use the notation ̂ (TRUE) = 1 and -({FALSE} = 0.

Example 2. 4 Let ̂  = (241) then the standard tableau

T=

7

HT1T= VL^H^T =

H^H,-1H,-1T -L^ Fl2 AA2 Ho-lH.-lHTlH,-lT =l2 J[12 n2 n2

Calculate type^){T) = ([IE1, ̂ , [^, ̂  ffl), a{2^i){T) = 7, ̂ i)(^) = 3 and c(T) = 15.
It develops that the atoms of 1.4 are actually generating functions for the class of

standard tableaux with fixed // - type.

Theorem 2. 5 Let ̂  = (2al6). The symmetric functions H^ H^2 . . . H^H^)[X;t} for s  
are generating functions for the standard tableaux o/ju - type = (6, [Tf) m ^e

sense that
H^H^ . . . H^H^)[X; t}= ^ ta^s^)[X]

T£ST2a-*'(>
type^(T)=(s,

This gives the next corollary that follows from this theorem and Corollary 1.4
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Corollary 2. 6 Let ̂  - (2al&). TAe ̂ [X;<?, f] are generating functions for the standard
tableaux in the sense that

H,[X^, t}= ^ t^T)qw)s^[X}
re5T2°+i>

The atoms of the Macdonald polynomials and the ̂  - type of the standard tableaux
suggest that ^he tableaux naturally fall into standard tableaux classes. For a sequence
s   {[TI2, ^}a x {D}6 set STCS = {T  ST2a+b\type^^(T) =s}.

This breakdown of the standard tableaux into classes is very beautiful when one
sees where the tableau that correspond to the atoms lie in the standard tableaux when
they are ranked by the charge. The figure at the end of this paper are the posets of the
standard tableaux of size 6 when they are ranked by the charge. The standard tableau
classes are grouped together in this poset and shaded so that each class is separated. The
horizontal position of each tableau is slightly related to cyclage. Many of the properties of the
Macdonald polynomials can be observed in these diagrams and expansions for H^^[X; q, t]
in terms of Schur functions can be immediately written down.

These classes have the property that 5T(7 ls'UJ^I'LLI ̂  U STC^S^UJ ̂  = STC(S^+2)
simply by definition of the type. There is also a relation between the a^ and b^ statistics
over this set of tableaux.

Proposition 2. 7 Iftype^^T)^, =^then a^+^(T) = a^^(T) andb^^T) =
6(2a+lib)(T) + 1.

Viype(2^i")(T)a+i = [m\ then a(y^^{T) = a^^2)(T) +(b+l) and b^a^^T) =
6(2a+i i;>)(r).

This relationship is consistent with observations made by Lynne Butler [1] about
adjacent^rows of the q, t-Kostka matrix. Comparing K^a^^q, t) to K\^^(qJ, t), one

notices that every term either changes by a factor of q or a factor of tb+l.
Taking the transpose (flipping the shape and entries of the diagram about the x = y

line) of a standard tableau T will be represented by the operator u^T. It has the property
that if the type^T) = s then the type^T) = (^s^us^,... , usk). This gives a simple
method for computing the a/, and 6^ statistics of uT from the a^ and ̂  statistics of T.

Proport ion 2. 8 a^.^T) = n((2al6)) - a^^[T) and b^^T) = n{{a + 6, a)) -
5(2»i»)(r).
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There exists outstanding conjectures about the number of standard tableaux that fall
in a catabolism type when ranked by charge. Since the standard tableaux classes that we
have defined here are generalizations for the catabolism type, it seems Jikely that the same
conjectures will hold true for these classes. Again we let s   ^11121,
the symbol Ai, = #{T\T   STCS, a^^(T} = Q.

x then define

Conjecture 2. 9 The sequence A; = (A^A^, A^,... ) z's a unimodal sequence (that is, it
increases and then decreases).

Example 2. 10

^ - (23) s =

s

o2i2'^ = (221

ll4.^=(211

3) A: =(1, 1, 2, 3, 2, 1, 1)
|YY^]^) A^=fl, 2, 3, 2,

-([m], |, |) A: =(1, 2, 3, 2, 1)
= (BBS) A: =(1, 1, 2, 3, 2, 1, 1)

* -
1, 11 I^IJ 11 } A, - ^1, ^>, t, -t, -t, ^, -I,

=([m], |, [ff) A: =(1, 2, 4, 4, 4, 2, 1)
A: =(1, 1, 2, 4, 4, 4, 3, 1)

A: =(1, 2, 4, 5, 7, 6, 5, 4, 2, 1, 1)
A: =(1, 1, 2, 4, 5, 6, 7, 5, 4, 2, 1)

A: =(1, 1, 2, 4, 5, 7, 9, 9, 9, 9, 7, 5, 4, 2, 1, 1)

s

s

s

s = Iffl'

^=(c

^ = (I6) . = w

We list here the A^ sequences for only the classes [[Wf^ , [If) since the other
classes are isomorphic to these. By the observations from Proposition 2. 7 we know that for
s   -i[T[2], ^l^ we have that the sequence A^ ^-^b+2^ can be calculated from the sequences

ls'l

A^̂
,L

,ince A^, ^ = A-^ 0+A(.
In [16], the two main results of were the following vertex operator formulas
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Theorem 2. 11 The operator

HI' =H^+ (e, [X]Ht, - Hl)q+^[X}Ht, - H^q2 + Ht, q3
= (1 - q)Ht + gei[X]^f + q\q - l)Ht,

has the property that HqytH^^[X;q, t\ = H^a^[X;q, t}.
Theorem 2. 12 The operator

HI' =H{+ {h,[XW - H^q + {h,[XW - H\}q2 + {h,[X\H[ - Ht,)q3
+ (es[X]^ - H[}q3 + {e,[X}Ht, - H[}q4 + (ei[X]^ - H^q5 + Ht,q6

has the property that Hq^H^[X;q, t] = H^)[X;q, t].

where H^ = uH^Rt These operators provide fast methods of calculating the
Macdonald polynomials through n = 7. At n= 8 there are 4 partitions, (4, 2, 2), (3, 3, 1, 1),
(4, 2, 1, 1), and (3, 3, 2), that are not covered by these formulas and at n = 9, there are 10.

Since these operators are also expressed in terms of the Hall-Littlewood vertex ope-
rators they can be used to extend the standard tableaux statistics [17] to the cases when
^ = (32alb) or /^ = (41°). These same methods might be used to prove some more special
cases of yertex operators and standard tableaux statistics but it seems that the general case

will not be so closely tied to the Hall-Littlewood symmetric functions.
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.4=III3[IE][IIZC E= (WrrrarrTOl

B=(Tffl2® ^®[m®/
c=(m2|T) c=igam)
fl=(Tfflffl) ^=1

Atoms of the cyclage poset for n = 6
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