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Summary. In his work on P -partitions, Stembridge defined the algebra of peak
functions Π, which is both a subalgebra and a retraction of the algebra of quasi-
symmetric functions. We show that Π is closed under coproduct, and therefore
a Hopf algebra, and describe the kernel of the retraction. Billey and Haiman, in
their work on Schubert polynomials, also defined a new class of quasi-symmetric
functions — shifted quasi-symmetric functions — and we show that Π is strictly
contained in the linear span Ξ of shifted quasi-symmetric functions. We show that
Ξ is a coalgebra, and compute the rank of the nth graded component.

Résumé. Dans ses travaux sur les P-partitions, Stembridge définit l’algèbre Π
des fonctions de pics. Cette algèbre peut être vue comme une sous-algèbre ou un
quotient de l’algèbre des fonctions quasi-symétriques. Nous montrons ici que Π
est fermée sous le coproduit, et est donc une algèbre de Hopf. Nous décrivons
aussi le noyau du quotient ci-dessus. D’autre part, dans leurs travaux sur les
polynômes de Schubert, Billey et Haiman ont défini une nouvelle classe de fonc-
tions quasi-symétriques: les fonctions quasi-symétrique décalé. Nous montrons que
Π est strictement contenue dans l’espace linéaire Ξ des fonctions quasi-symétrique
gauchis. Puis nous montrons que Ξ est une coalgèbre et calculons les dimensions
des composantes de degrée n.

1. Introduction

Schur Q functions first arose in the study of projective representations of Sn [8]. Since
then they have appeared in variety of contexts including the representations of Lie
superalgebras [9] and cohomology classes dual to Schubert cycles in isotropic Grass-
manians [4, 7]. While studying the duality between skew Schur P and Q functions
and their connection to the Schubert calculus of isotropic flag manifolds, we were
led to their quasi-symmetric analogues: the peak functions of Stembridge [10]. We
show that the linear span of peak functions is a Hopf algebra (Theorem 2.2). We
also show that these peak functions are contained in the strictly larger set of shifted
quasi-symmetric functions (Theorem 3.6) introduced by Billey and Haiman [1]. We
remark that the quasi-symmetric functions here are not any apparent specialization
of the quasi-symmetric q-analogues of Hivert [3].
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From extensive calculations, we believe that the set of all shifted quasi-symmetric
functions form a Hopf algebra, but at present we can only show that:

The set of all shifted quasi-symmetric functions forms a graded coalgebra whose nth
graded component has rank πn, where πn is given by the recurrence

πn = πn−1 + πn−2 + πn−4,

with initial conditions π1 = 1, π2 = 1, π3 = 2, π4 = 4.

We shall prove this result (Theorems 3.2 and 4.3) and in addition shall establish some
other properties of these functions.

A composition α = [α1, α2, . . . , αk] of a positive integer n is an ordered list of positive
integers whose sum is n. We denote this by α ⊨ n. We call the integers αi the
components of α, and denote the number of components in α by k(α). There exists a
natural one-to-one correspondence between compositions of n and subsets of [n− 1].
If A = {a1, a2, . . . , ak−1} ⊂ [n− 1], where a1 < a2 < . . . < ak−1, then A corresponds
to the composition, α = [a1 − a0, a2 − a1, . . . , ak − ak−1], where a0 = 0 and ak = n.
For ease of notation, we shall denote the set corresponding to a given composition α
by I(α). For compositions α and β we say that α is a refinement of β if I(β) ⊂ I(α),
and denote this by α ≼ β.

For any composition α = [α1, α2, . . . , αk] we denote by Mα the monomial quasi-
symmetric function [2]

Mα =
∑

i1<i2<...<ik

xα1
i1

. . . xαk
ik
.

We define M0 = 1, where 0 denotes the unique empty composition of 0. We denote
by Fα the fundamental quasi-symmetric function [2]

Fα =
∑
α≼β

Mβ.

Definition 1.1. For any subset A ⊂ [n − 1], let A + 1 be the subset of {2, . . . , n}
formed from A by adding 1 to each element of A. Let α ⊨ n. Then we define

θα =
∑
β ⊨ n

I(α)⊂I(β)∪I(β)+1

2k(β)Mβ.

This is the natural extension of the definition of peak functions given in [10].

Example 1.2. We shall often omit the brackets that surround the components of a
composition.

If α = 21, then I(α) = {2}, and I(α) + 1 = {3}. Hence

θ21 = 4M21 + 4M12 + 8M111.
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Let Σn be the Z-module of quasi-symmetric functions spanned by {Mα}α⊨n and let
Σ = ⊕n≥0Σ

n be the graded Z-algebra of quasi-symmetric functions. This is a Hopf
algebra [5] with coproduct given by

∆(Mα) =
∑
α=β·γ

Mβ ⊗Mγ,

where β · γ is the concatenation of compositions β and γ.

Example 1.3. ∆(M32) = 1⊗M32 +M3 ⊗M2 +M32 ⊗ 1.

We compute the coproduct of the functions θα.

Lemma 1.4. For any composition α ⊨ n we have that

∆(θα) =
∑

θϵ·a ⊗ θϕ(b·ζ)(1)

where the sum is over all ways of writing α as ε·(a+b)·ζ, that is, the concatenation of
compositions ε and ζ, and a component of α written as the sum of numbers a, b ≥ 0.
Also ϕ(b · ζ) = [1 + ζ1, ζ2, . . .] if b = 1 and b · ζ otherwise.

We shall use this result to show that certain subsets of functions θα span coalgebras
(Theorems 2.2 and 3.2).

Proof. Definition 1.1 is equivalent to

θα =
∑
β ⊨ n
β∗ ≼ α

2k(β)Mβ,

where β∗ is the refinement of β obtained by replacing all components βi > 1, for
i > 1, by [1, βi − 1]. Thus the LHS of equation (1) is equal to∑

β ⊨ n
β∗ ≼ α
β = γ · δ

2k(β)Mγ ⊗Mδ =
∑

γ · δ ⊨ n
(γ·δ)∗≼α

2k(γ)Mγ ⊗ 2k(δ)Mδ.(2)

Let 2k(γ)Mγ ⊗ 2k(δ)Mδ be a term of this sum, with γ ⊨ m. This term can only appear
in one summand on the RHS of equation (1), namely θε·a ⊗ θϕ(b·ζ) with ε · a ⊨ m. To
show that it does indeed appear, we need to prove that γ∗ ≼ ε · a and δ∗ ≼ ϕ(b · ζ).
Let δ∗∗ be the refinement of δ∗ obtained by replacing the part δ1 by [1, δ1 − 1] if
δ1 > 1. We have that

γ∗ · δ∗∗ = (γ · δ)∗ ≼ ε · (a+ b) · ζ,
which implies that γ∗ ≼ ε · a, and δ∗∗ ≼ b · ζ ≼ ϕ(b · ζ).

If δ1 = 1 then δ∗ = δ∗∗ ≼ ϕ(b · ζ). However, if δ1 > 1 then there are two possible
cases: either δ1 ≤ b, or b = 1 and δ1 − 1 ≤ ζ1. In the former case δ∗ ≼ b · ζ = ϕ(b · ζ),
while in the latter, δ1 ≼ 1 + ζ1, whence δ∗ ≼ [1 + ζ1, ζ2, . . .] = ϕ(b · ζ).
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Conversely, let 2k(γ)Mγ ⊗ 2k(δ)Mδ be a term belonging to a tensor θε·a ⊗ θϕ(b·ζ) on the
RHS of equation (1). To show that it appears in equation (2) we must prove that
(γ · δ)∗ ≼ ε · (a+ b) · ζ. We have that γ∗ ≼ ε · a and δ∗ ≼ ϕ(b · ζ), which imply that

(γ · δ)∗ = γ∗ · δ∗∗ ≼ γ∗ · δ∗ ≼ ε · a · ϕ(b · ζ).

If b > 1 then

(γ · δ)∗ ≼ ε · a · ϕ(b · ζ) = ε · a · b · ζ ≼ ε · (a+ b) · ζ.
If b = 1 then δ∗ ≼ ϕ(b · ζ) = [1 + ζ1, ζ2, . . .] implies that

δ∗∗ = [1, . . .] ≼ [1, ζ1, . . .] = b · ζ.
Therefore,

(γ · δ)∗ = γ∗ · δ∗∗ ≼ ε · a · b · ζ ≼ ε · (a+ b) · ζ
as desired. □

2. The peak Hopf algebra

Definition 2.1. For any composition α = [α1, α2, . . . , αk] we say that θα is a peak
function if αi = 1 ⇒ i = k.

Observe that if θα is a peak function and α ⊨ n, then I(α) ⊂ {2, . . . , n−1} such that
no two i in I(α) are consecutive.

Let Πn be the Z-module spanned by all peak functions θα, α ⊨ n, and let Π = ⊕n≥0Π
n.

This was studied by Stembridge [10] who showed that the peak functions are F-
positive, are closed under product, and form a basis for Π, and so the rank of Πn is
the nth Fibonacci number. In addition we also know the following about the algebra
of peaks, Π.

Theorem 2.2. Π is closed under coproduct.

Proof. If all components of a composition α, except perhaps the last, are greater than
1, then the same is true for all compositions ε · a and ϕ(b · ζ) appearing in the RHS
of equation (1). □

Let Θ be the Z-linear map from Σ to Π defined by Θ(Fα) = θΛ(α), where Λ(α)
is the composition formed from α = [α1, α2, . . . , αk] by adding together adjacent
components αi, αi+1, . . . , αi+j where αi+l = 1 for l = 0, . . . , j−1, and either αi+j ̸= 1,
or i+ j = k.

Example 2.3. If α = 31125111 then Λ(α) = 3453.

Stembridge [10] showed that Θ : Σ → Π is a graded surjective ring homomorphism,
and was an analogue of the retraction from the algebra of symmetric functions to
Schur Q functions. It is clear from our proof above that this morphism is in fact a
Hopf homomorphism. We can describe the kernel of Θ as follows.
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Lemma 2.4. The non-zero differences Fα − FΛ(α) form a basis of the kernel of Θ.

Proof. Each difference Fα − FΛ(α) is in the kernel of Θ as Θ(Fα − FΛ(α)) = 0 since
Λ(Λ(α)) = Λ(α). In addition, the non-zero differences are linearly independent as
they have different leading terms. Letting fn denote the nth Fibonacci number, there
are 2n−1 − fn such differences, and since

dimkerΘ = dimΣn − dimΠn

= 2n−1 − fn,

our result follows. □

3. The coalgebra of shifted quasi-symmetric functions

Definition 3.1. For any composition α = [α1, α2, . . . , αk] ⊨ n we say that θα is a
shifted quasi-symmetric function (sqs-function) if n ≤ 1 or α1 > 1.

Observe that if θα is an sqs-function and α ⊨ n, then I(α) ⊂ {2, . . . , n− 1}.

For integers n ≥ 0, let Ξn be the Z-module spanned by all sqs-functions θα, α ⊨ n,
and let Ξ = ⊕n≥0Ξ

n.

Theorem 3.2. Ξ is closed under coproduct.

Proof. If the first component of a composition α is greater than 1, then the same is
true for all compositions ε · a and ϕ(b · ζ) appearing in the RHS of equation (1). □

Unlike peak functions [10], sqs-functions are not F -positive since

θ211 = F22 + F112 + 2F121 + F211 − F1111.

Definition 3.3. For any composition, α ⊨ n, we define the complement αc of α to
be the composition for which I(αc) = (I(α))c, the set complement of I(α) in [n− 1].
We define the graph G(α) of α to be the graph obtained from

by removing the edge (i, i+ 1) if and only if i ∈ I(α).

Observe that G(αc) contains the edge (i, i+1) if and only if this edge is not contained
in G(α). These graphs will be used later to simplify the proof of Theorem 3.6.

Let a word of length n be any n-tuple, w1w2 . . . wn, and let a binary word of length n
be a word w1w2 . . . wn wuch that wi ∈ {0, 1} for all i. For 2 ≤ i ≤ n−1, let us denote
by 3(i) the composition [1i−2, 3, 1n−i−1] of n. For some subset S ⊂ {2, . . . , n − 1},
let us denote by

∧
i∈S 3

(i) the composition of n for which G(
∧

i∈S 3
(i)) has an edge

between vertices i and i+ 1 if and only if an edge exists between vertices i and i+ 1
in G(3(i)) for some i ∈ S.
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Example 3.4. Let S = {2, 3} ⊂ [3]. Then G(3(2)) is

and G(3(3)) is

hence G(
∧

i∈S 3
(i)) is

so
∧

i∈S 3
(i) is the composition 4.

Definition 3.5. [1] Let α be a composition of n. Let A(I(α)) denote the set of all
sequences j1 ≤ j2 ≤ . . . ≤ jn in N such that we do not have ji−1 = ji = ji+1 for any
i ∈ I(α). The shifted quasi-symmetric function θBH

α is given by

θBH
α =

∑
J = (j1, . . . , jn)
j1 ≤ . . . ≤ jn
J∈A(I(α))

2|j|xj1 . . . xjn ,

where |j| denotes the number of distinct values ji in J .

Theorem 3.6. For any sqs-function θα we have that θα = θBH
α .

Proof. For each i ∈ I(α) ⊂ [n− 1], ji−1 = ji = ji+1 is forbidden in any monomial

xj1xj2 . . . xji . . . xjn

appearing as a summand of the function θBH
α . This is equivalent to saying that Mβ

is a summand of θBH
α if and only if G(3(i)) ̸⊂ G(β) for all i ∈ I(α). Therefore at least

one of i − 1 or i must be the largest label of a vertex in a connected component in
G(β).

Now when going from compositions of n to subsets of [n− 1] we can do so using our
graphs, G. All we have to do is list the label of the vertex that is the largest in each
connect component, not listing n. We call these vertices the end-points. We are now
in a position to prove the equivalence of Definitions 1.1 and 3.5 for sqs-functions.

The powers of 2 agree so we need only show that the indices of summation do too.
To see this, take any sqs-function θα and let i ∈ I(α). Then Mβ is a summand in
θBH
α if at least one of i− 1 or i is an end-point in G(β). Therefore i or i− 1 belongs
to I(β), and Mβ is a summand of θα. Conversely, if Mβ is a summand of θα, then
this implies that for each i ∈ I(α), we have that i− 1 or i belongs to I(β), so one of
i− 1 or i is an end-point in G(β), so Mβ is a summand of θBH

α . □
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4. A basis for Ξ

Definition 4.1. Let θα be an sqs-function and α ⊨ n. We define an internal peak
i ∈ I(α) such that i− 1, i+ 1 ̸∈ I(α), and i ∈ {3, . . . n− 2}.

Remark Observe that the occurrence of an internal peak in the ith position in
I(α) = {w1, w2, . . .}, where w1 < w2 < . . ., is equivalent to having two components
of α, say αi, αi+1 such that αi+1 ≥ 2, and αi ≥ 2 if i ̸= 1, or αi ≥ 3 if i = 1.

We can now describe the basis of Ξ as follows.

Theorem 4.2. The coalgebra Ξ has a basis consisting of all sqs-functions θα where
I(α) contains no internal peak.

We sketch the proof of Theorem 4.2 later.

Theorem 4.3. The rank of Ξn is given by the recurrence

πn = πn−1 + πn−2 + πn−4,

with initial conditions π1 = 1, π2 = 1, π3 = 2, π4 = 4.

This recurrence was suggested by a superseeker query [6].

Proof. By direct calculation we obtain that π1 = 1, π2 = 1, π3 = 2, and π4 = 4.

To obtain our recurrence, we observe that for each sqs-function, θα where α ⊨ n, we
can encode I(α) as a binary word of length n− 2, by placing a 1 in position i− 1 if i
is contained in I(α), and 0 otherwise. By this one-to-one correspondence we see that
I(α) contains no internal peak if its corresponding binary word does not contain 010
as a subword.

We therefore count binary words of length n that avoid the subword 010. Appending
either 1 or 0 to such a binary word of length n − 1 gives one of length n, provided
that we have not created the subword 010 in the last three positions. Let an, bn, cn,
and dn enumerate those binary words of length n−2 that avoid the subword 010 and
end in, respectively 00, 01, 10, and 11. We then obtain the following 4 simultaneous
recursions.

an = an−1 + cn−1, bn = an−1 + cn−1, cn = dn−1, dn = bn−1 + dn−1.

Clearly the number of I(α)s in [n− 1] with no internal peaks is given by

πn = an + bn + cn + dn,
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However by substituting in our recurrences we obtain

πn = an + bn + cn + dn

= 2an−1 + bn−1 + 2cn−1 + 2dn−1

= πn−1 + an−1 + cn−1 + dn−1

= πn−1 + an−2 + bn−2 + cn−2 + 2dn−2

= πn−1 + πn−2 + dn−2

= πn−1 + πn−2 + bn−3 + dn−3

= πn−1 + πn−2 + an−4 + bn−4 + cn−4 + dn−4

= πn−1 + πn−2 + πn−4.

□

We say that Mβ is a maximal term of θα if for any γ higher in the partial order of
compositions Mγ is not a summand of θα. The following lemma is stated without
proof.

Lemma 4.4. Let θα be an sqs-function. Consider the collection S of all possible sets
derived from I(α) by adding either i−1 or i+1 to I(α) for all internal peaks i ∈ I(α).
If Mβ is a maximal term of θα, then β is derived from∧

i ∈ (I(α̃))c

I(α̃)∈S

3(i)

by adding adjacent components equal to 1 together to give a component equal to 2 as
often as possible.

Lemma 4.5. Let θα be an sqs-function, and let I(α) have an internal peak in the jth
position, then we have the following linear relation

θα = θ[α1,...,αj−1,1,αj+1,...,αk] + θ[α1,...,αj ,1,αj+1−1,...,αk]

−θ[α1,...,αj−1,1,1,αj+1−1,...,αk].

Proof. By Definition 3.5 we have that the leading terms of θα determine the other
summands that belong to θα. Hence by Lemma 4.4 it follows that the summands of θα
will be the union of the summands of θ[α1,...,αj−1,1,αj+1,...,αk] and θ[α1,...,αj ,1,αj+1−1,...,αk].
However, those summands that appear in both will be duplicated. By definition these
will be the summands of θ[α1,...,αj−1,1,1,αj+1−1,...,αk], and the result follows. □

Sketch of proof of Theorem 4.2. From our relation in Lemma 4.5, it follows that any
θα can be rewritten as a linear combination of functions θα̃, where I(α̃) contains no
internal peaks. In addition, by Lemma 4.4 and definition 3.5 we have that the set
of all sqs-functions θα where I(α) contains no internal peaks is linearly independent
and thus form a basis for Ξ. □
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