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Abstract

We characterize coloured Dyck and Schr�oder paths in both an algebraic and combinatorial

way. In fact, we give algebraic and combinatorial proofs that, starting from the de�nition of such

paths, we obtain a generating function and, from this, the corresponding recurrence. Finally, by

using a generalization of a beautiful bijection of Sulanke [5], we give a combinatorial proof of this

recurrence, thus closing the ideal cycle connecting all the basic properties of the combinatorial

objects considered.

1 Introduction

In this paper we consider a class S of coloured lattice paths in Z

2

which start at the origin (0; 0)

and arrive to the point (2n; 0); n � 1; they never touch or pass below the x-axis, except for their

starting and ending points and are made up of the following three kinds of steps:

� (1; 1); or up steps, going from a point (x; y) to (x+ 1; y + 1);

� (2; 0); or double horizontal steps, going from a point (x; y) to (x+ 2; y);

� (1;�1); or down steps, going from a point (x; y) to (x+ 1; y � 1).

These steps can have di�erent colours and, in particular, we study the parametric case in which

there are a > 0 colours for up steps, b � 0 colours for double horizontal steps and c > 0 colours

for down steps. The set of all paths arriving to (2n; 0) will be denoted by S

n

; the corresponding

cardinality by S

n

= jS

n

j; and their generating function by S(t) =

P

n�0

S

n

t

n

: If we ignore the

�rst up step and the last down step, we obtain the set S of coloured paths that never pass below

the x-axis, but possibly touch it at intermediate points. Paths of this kind starting at the origin

and arriving to (2n; 0) will be denoted by S

n

; with S

n

denoting the cardinality jS

n

j and with

S(t) =

P

n�0

S

n

t

n

denoting the corresponding generating function.

Some cases are well-known in the literature; for example, when a = c = 1 and b = 0 we obtain the

so-called elevated Dyck paths, which are counted by the Catalan numbers S

n

= f0; 1; 1; 2; 5; 14; � � �g:

When a = b = c = 1; we obtain the elevated Schr�oder paths, counted by the big Schr�oder numbers

S

n

= f0; 1; 2; 6; 22; 90; � � �g; n � 0: Actually, these two situations are the most important, but some

coloured versions of these paths have some interesting combinatorial intrepretations. For example,

if we consider Schr�oder paths in which the up steps can have a di�erent colours, double horizontal

steps can have b di�erent colours and down steps can have only one colour (c = 1), we obtain

a way to count the algebraic expressions according to the number a of di�erent binary operators
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Figure 1.1: Coloured Schr�oder paths and algebraic expressions.

and the number b of di�erent unary operators (see Figure 1.1). In any case, we wish to point out

that our approach gives a uni�ed treatment of Dyck and Schr�oder paths and our algebraic and

combinatorial proofs work for any kind of these paths.

The aim of this paper is threefold:

� to �nd the properties of these generalized (elevated) Dyck and Schr�oder paths;

� to extend a bijective proof �rst found by Sulanke [5] to all these kinds of paths;

� to show that these paths constitute an example of a complete \algebraico-combinatorial"

object.

In order to explain this last sentence, let us consider the common way to approach a combinato-

rial problem. When we wish to study some combinatorial object, we often try to �nd a recurrence

relation describing the whole set of objects; then we pass from the recurrence to a generating func-

tion and �nally use the generating function to derive properties of the original objects. In this way

combinatorial and algebraic considerations and arguments are mixed together and used according

to the preference of the author and/or their convenience in the particular case. Some authors prefer

a purely combinatorial approach, and only use algebra when strictly necessary or when they are

not able to �nd a suitable combinatorial proof. Algebraic arguments are usually more simple and

they are often considered of less value because they only give a formal solution and do not allow

us to see the \deep" and structural aspects of the problem; on the other hand, algebra can never

be completely avoided, because, at some point in our study, we should arrive at some counting

results. In principle, all the properties of a combinatorial object should be characterized in both an

algebraic and a combinatorial way, but this is not always possible, and some properties are proved

by combinatorial arguments, while others by algebraic reasoning.

A complete \algebraico-combinatorial" object is a combinatorial object whose properties are

proved both by algebraic and combinatorial arguments. We show that our paths are, essentially,

objects of this type and that they satisfy the cycle described in Figure 1.2. In particular:

� we use combinatorial considerations to obtain a formal description of the paths through a

context-free grammar;

� we apply the Sch�utzenberger methodology to pass from the description to the generating

functions (algebraic approach);
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Figure 1.2: The cycle of an \algebraico-combinatorial" object.

� we �nd the di�erential equation satis�ed by the generating function, so that we can derive

the recurrence relations satis�ed by our objects in an algebraic fashion; we use the method

of \indeterminate coe�cients" applied to di�erential equations.

� by a generalization of Sulanke bijection [5], we prove in a combinatorial way, that the recur-

rence relation is satis�ed by our original objects.

We observe that these arguments can be \reversed", that is, proved in the other direction, or,

if one prefers, the arrows in the cycle can be double headed.

2 Toward the recurrence relation

Let S = [

n

S

n

be the set of all paths as de�ned in the Introduction. Let U

[a]

H

[b]

and D

[c]

be the

three sets of up, double horizontal and down steps. A path in S starts with an up step, which

can assume a di�erent colours, and ends with a down step, which, in turn, can assume c di�erent

colours. By using standard notation for context-free grammars (BNF), we write:

S ::= U

[a]

SD

[c]

(2.1)

where S denotes the set of paths that run from (0; 0) to (2n; 0); for n � 1; (that never pass below

the x-axis). We have:

S ::= � j H

[b]

S j U

[a]

SD

[c]

S; (2.2)

by distinguishing among an empty path, a path which starts with any of the H

[b]

double horizontal

steps and a path which starts with whatever U

[a]

step. By applying Sch�utzenberger methodology

[4] to the grammar de�ning S we get the following equation in S(t) =

P

n�0

S

n

t

n

:

S(t) = 1 + btS(t) + actS(t)

2

:

Since S(0) = j�j = 1; the appropriate solution to this second-degree equation is:

S(t) =

1� bt�

p

1� 2(b+ 2ac)t+ b

2

t

2

2act

:



If we let S(t) =

P

n�0

S

n

t

n

; we obviously get S(t) = actS(t); hence

S(t) =

1� bt�

p

1� 2(b+ 2ac)t+ b

2

t

2

2

:

We have thus found, by using the �rst three steps illustrated in Figure 1.2, the counting gener-

ating function for class S:

Before proceeding to close the cycle, we next examine some properties characterizing our

coloured paths. The �rst property we consider is related to the Narayana numbersN

n;j

=

1

n

�

n

j�1

��

n

j

�

;

1 � j � n: These numbers are well known in the literature since they have many combinatorial

interpretations (see for example Sulanke [6] which describes many properties of Dyck paths having

the Narayana distribution). In particular, Narayana numbers N

n;j

count the number of (not ele-

vated) Dyck paths of semilength n having exactly j peaks (in the sequel, we will take this result as

granted). Figure 2.3, in which a marked point denotes a peak, illustrates the peaks' distribution

for n = 3 : we have N

3;1

= 1 path with 1 peak, N

3;2

= 3 paths with 2 peaks and N

3;3

= 1 path

with 3 peaks.

Figure 2.3: The peaks' distribution in Dyck paths of semilength 3.

Here, we are interested in Narayana polynomials as de�ned in Sulanke [6]:

N

0

(w) = 1; N

n

(w) =

n

X

j=1

N

n;j

w

j

; n > 0

We remark that the paper [1] analyzed the n

th

\Narayana polynomial" de�ned di�erently as

P

n

j=1

N

n;j

(w + 1)

j

= N

n

(w + 1): We can prove the following theorem, both in an algebraic and a

combinatorial way:

Theorem 2.1 Class S is related to the Narayana polynomials by the following formula:

S

n

= (ac)

n

N

n�1

�

b+ ac

ac

�

; n � 1:

The algebraic proof: We �rst consider the �-free grammar we obtain from (2.2):

S

�

::= H

[b]

j H

[b]

S

�

j U

[a]

D

[c]

j U

[a]

D

[c]

S

�

j U

[a]

S

�

D

[c]

j U

[a]

S

�

D

[c]

S

�

(2.3)

and let S

�

(t) =

P

n�0

S

�

n

t

n

where S

�

n

= jS

�

j: We obviosly have S(t) = S

�

(t) + 1: By applying

Sch�utzenberger methodology to (2.3) we get:

S

�

(t) = t(b(1 + S

�

(t)) + ac(1 + S

�

(t))

2

) = t(1 + S

�

(t))(b+ ac+ acS

�

(t)) = t�(S

�

(t)):

We are in the hypotheses of the Lagrange Inversion Theorem:

S

�

n

= [t

n

]S

�

(t) =

1

n

[w

n�1

]�(w)

n

=

1

n

[w

n�1

](1 + w)

n

�

1 +

ac

b+ ac

w

�

n

:



This is a convolution, and we get:

S

�

n

=

1

n

n�1

X

k=0

 

n

k

! 

n

k + 1

!

�

b+ ac

ac

�

k+1

(ac)

n

=

= (ac)

n

n

X

j=1

1

n

 

n

j � 1

! 

n

j

!

�

b+ ac

ac

�

j

= (ac)

n

n

X

j=1

N

n;j

�

b+ ac

ac

�

j

= (ac)

n

N

n

�

b+ ac

ac

�

:

Moreover,

S

n

= [t

n

]S(t) = ac[t

n�1

](1 + S

�

(t)) = (ac)

n

N

n�1

�

b+ ac

ac

�

:

The combinatorial proof: Let us consider the N

n;j

Dyck paths of semilength n and having

j peaks. Every peak can either be transformed into a double horizontal step and therefore be

coloured by b di�erent colours or remain as it is assuming ac di�erent colours, a colors for the up

step combined with c colours of the down step. In conclusion, it may assume b+ ac di�erent forms

and/or colours. Then, 2n � 2j up and down steps remain, n � j up and down steps respectively.

The up steps can assume a di�erent colours while the down steps c: Therefore, every one of the

N

n;j

paths can be transformed into (b + ac)

j

a

n�j

c

n�j

di�erent coloured (not elevated) Schr�oder

paths. In all we have:

S

n

=

n

X

j=1

N

n;j

(b+ ac)

j

a

n�j

c

n�j

and in the notation above this is exactly (ac)

n

N

n

�

b+ac

ac

�

: The proof follows from the relation

S

n

= acS

n�1

:

The previous theorem is an example of how sometimes the combinatorial proof can be more

direct than the algebraic proof.

We point out, in particular, two special cases. When a = c = 1 and b = 0; i.e. in the Catalan

case, Theorem 2.1 becomes:

S

n

= N

n�1

(1) =

n�1

X

j=1

N

n�1;j

;

when a = b = c = 1; i.e. in the Schr�oder case, Theorem 2.1 becomes:

S

n

= N

n�1

(2) =

n�1

X

j=1

N

n�1;j

2

j

:

The following theorem establishes the number of occurrences of step pairs of the form D

[c]

H

[b]

or H

[b]

H

[b]

on the totality of paths of S

n

:

Theorem 2.2 For n � 2; there are b(n� 2)S

n�1

step pairs of the form D

[c]

H

[b]

or H

[b]

H

[b]

on the

totality of paths of S

n

:

The algebraic proof: In the grammar (2.3) we can distinguish between paths that start with

an H

[b]

step (S

H

[b]

) and paths that start with a U

[a]

step (S

U

[a]

):

S

�

::= S

H

[b]

jS

U

[a]



S

H

[b]

::= H

[b]

j H

[b]

S

H

[b]

j H

[b]

S

U

[a]

S

U

[a]

::= U

[a]

D

[c]

j U

[a]

D

[c]

S

H

[b]

j U

[a]

D

[c]

S

U

[a]

j U

[a]

S

�

D

[c]

j U

[a]

S

�

D

[c]

S

H

[b]

j U

[a]

S

�

D

[c]

S

U

[a]

We now apply the Sch�utzenberger methodology by introducing the new indeterminate w to mark

the step pairs D

[c]

H

[b]

or H

[b]

H

[b]

: We thus obtain the following system of equations:

S

�

(t; w) = S

H

[b]

(t; w) + S

U

[a]

(t; w)

S

H

[b]

(t; w) = t+ tS

U

[a]

(t; w) + twS

H

[b]

(t; w)

S

U

[a]

(t; w) = t+ twS

H

[b]

(t; w) + tS

U

[a]

(t; w) + tS

�

(t; w) + twS

�

(t; w)S

H

[b]

(t; w) + tS

�

(t; w)S

U

[a]

(t; w)

being

S(t; w) = 1 + S

�

(t; w) and S(t; w) = actS(t; w) =

X

n;k

S

n;k

t

n

w

k

where S

n;k

denotes the number of paths in S

n

having k occurrences of step pairsD

[c]

H

[b]

orH

[b]

H

[b]

:

Obviously, to prove the theorem, we have to �nd the value

P

k�1

kS

n;k

: By solving the previous

system we get:

S(t; w) =

1� btw �

p

1� 2(bw+ 2ac) + b(bw

2

+ 4acw� 4ac)t

2

2

which corresponds to S(t) if we put w = 1: The sum

P

k�1

kS

n;k

can be computed by di�erentiating

S(t; w) with respect to w and then putting w = 1 :

X

k�1

kS

n;k

= [t

n

]

@S(t; w)

@w

�

�

�

�

w=1

= [t

n

]

bt(1� bt� 2act�

p

1� 2(b+ 2ac)t+ b

2

t

2

)

2

p

1� 2(b+ 2ac)t+ b

2

t

2

=

= [t

n

]bt

2

S

0

(t)� [t

n

]btS(t) = b(n� 2)S

n�1

:

The combinatorial proof: We �rst consider uncoloured Schr�oder paths S

n�1

(a = b = c = 1).

If we ignore the last down step, there are exactly n�2 ending points of down and double horizontal

steps, corresponding to the marked points of Figure 2.4, which illustrates case n = 4: If we add,

beginning from every one of these points, a double horizontal step, we obtain a path in S

n

: We do

not obtain all the paths in S

n

; but we obtain all the paths containing a step pair DH or HH; with

the appropriate multiplicity (see the two cases marked with (*) in Figure 2.4). On the other hand,

if we have a path in S

n

with a step pair DH or HH; by eliminating the second step H; we get a

path in S

n�1

and therefore we have a bijection between n� 2 replications of S

n�1

and the paths in

S

n

having a step pair DH or HH; with the appropriate multiplicity. This shows that the number

of step pairs DH or HH is just (n�2)S

n�1

: Finally, if we have double horizontal steps of b di�erent

colours, the construction above should be performed by adding b di�erent double horizontal steps,

one for each colour. This proves the generalized formula b(n� 2)S

n�1

:

Next we show how to �nd, in an algebraic way, a recurrence relation de�ning S

n

: The method is

quite general and is an example of the \indeterminate coe�cients" technique applied to a di�erntial

equation. It allows us to determine a recurrence relation de�ning a set of combinatorial objects

as we know the corresponding counting generating function (see [3] for another application of the

same technique). The combinatorial interpretation is more complex and is illustrated in the next

section.



(*)

(*)

Figure 2.4: From S

3

to the subset of S

4

containing a step pair DH or HH:

Theorem 2.3 For n � 2; the following recurrence relation holds:

(b+ 2ac)(2n� 1)S

n

= (n+ 1)S

n+1

+ b

2

(n� 2)S

n�1

with initial conditions S

1

= ac; S

2

= ac(ac+ b):

The algebraic proof : We distinguish the following three steps:

S1) The �rst step consists in �nding two rational functions p

1

(t) and p

2

(t) such that:

p

1

(t)S

0

(t) + p

2

(t)S(t) = 1:

To do so, we set Q =

p

1� 2(b+ 2ac)t+ b

2

t

2

and obtain:

S(t) =

1� bt� Q

2

; S

0

(t) =

(b+ 2ac+ b

2

t)Q� b(1� 2t(b+ 2ac) + b

2

t

2

))

2(1� 2t(b+ 2ac) + b

2

t

2

)

:

S2) Then, we look for p

1

(t) and p

2

(t) by collecting p

1

(t)S

0

(t) + p

2

(t)S(t) with respect to Q and

by equating the Q coe�cient to 0 and the rest to 1 :

(b+ 2ac� b

2

t)p

1

(t)� (1� 2(b+ 2ac)t+ b

2

t

2

)p

2

(t) = 0

b(1�2(b+2ac)t+b

2

t

2

)p

1

(t)�(1�(3b+4ac)t+b(3b+4ac�bt)t

2

)p

2

(t) = �2(1�2(b+2ac)t+b

2

t

2

):

S3) By solving the previous linear system we �nd:

p

1

(t) =

1� 2(b+ 2ac)t+ b

2

t

2

ac(1 + bt)

; p

2

(t) =

b+ 2ac� b

2

t

ac(1 + bt)

:

This solution corresponds to the following di�erential equation:

(1� 2(b+ 2ac)t+ b

2

t

2

)S

0

(t) + (b+ 2ac� b

2

t)S(t) = ac(1 + bt);

and by extracting the n

th

coe�cient we get, after some symplifying, the proof of the theorem.



The combinatorial proof: See next section.

From Theorems 2.1 and 2.3 the following Corollary follows:

Corollary 2.4 Narayana polynomials satisfy the following recurrence relation:

(2n� 1)(1 + w)N

n�1

(w) = (n+ 1)N

n

(w) + (n� 2)(1� w)

2

N

n�2

(w)

with initial conditions N

0

(w) = 1; N

1

(w) = w:

Proof: The recurrence is easily proved forw =

b+ac

ac

by substituting S

n

with (ac)

n

N

n�1

((b+ ac)=ac)

in the recurrence for S

n

; a; b; c 2 N; i.e. the relation holds true for an in�nite number of points.

Since it is an equality between polynomials, it should be valid for all w 2 R:

Remark: for a complete combinatorial proof see Sulanke [7].

3 The combinatorial interpretation

In this section we give a combinatorial interpretation of the recurrence

(b+ 2ac)(2n� 1)S

n

= (n+ 1)S

n+1

+ b

2

(n� 2)S

n�1

; (3.4)

our proof is mainly based on the approach of Sulanke [5], who studies the case corresponding to

a = b = c = 1. The same case has also been studied in [2], where Foata and Zeilberger give a

combinatorial interpretation of the recurrence by using a completely di�erent approach.

In order to prove (3.4) we proceed by performing the following actions:

A1) in corrispondence with the term (b + 2ac)(2n� 1)S

n

; we consider paths in S

n

, take 2n � 1

replications of each path by marking, with a symbol x or y (see below), each of its 2n � 1

non-terminal D

[c]

steps, and �nally take b+ 2ac equal copies of each path;

A2) in corrispondence with the term (n + 1)S

n+1

; we consider paths in S

n+1

and take n + 1

replications of each path by marking, with a symbol z, each of its n+ 1 U

[a]

and H

[b]

steps;

A3) in corrispondence with the term b

2

(n � 2)S

n�1

; we consider paths in S

n�1

, take n � 2 repli-

cations of each path by marking, with a symbol z, each of its n � 2 H

[b]

and non �nal D

[c]

steps, and �nally take b

2

equal copies of each path;

we then de�ne a bijection between the paths de�ned in A1) and the paths de�ned in A2), A3).

Regarding action A1), for each path in S

n

; we temporarily index its steps with the integers 1

through 2n � 1 so that each U

[a]

step and each non�nal D

[c]

step receives one integer and each

H

[b]

step receives two consecutive integers. Then we mark each path by selecting an integer from

f1; : : : ; 2n� 1g and marking the corresponding step:

� by the symbol x if the step is U

[a]

or if the step is H

[b]

with an odd index,

� by the symbol y if the step is D

[c]

or if the step is H

[b]

with an even index.



x
x y

x
x y

x
x y

z
z z

z
z z

z
z z

z
z z

z
z z

z
z z

z
z z

z
z z

z
z

z

z
z

z

z
z

z
z z

z

2 3 2
11 1

3 2

Action A1):

Action A2):

|[3]*S |=36

|[3]*S |=9

|S |=3
2

2

3

3

Figure 3.5: Sets S

n

; [2n� 1]� S

n

and [n+ 1]� S

n+1

when n = 2; a = c = 1 and b = 2, and their

cardinalities.

We denote the set of such replications as [2n�1]�S

n

; then take b+2ac equal copies of [2n�1]�S

n

and denote this new set as (b+ 2ac)[2n� 1]� S

n

:

For what concerns action A2), we replicate each path in S

n+1

by sequentially marking each of

its U

[a]

or H

[b]

steps by the symbol z (every path in S

n+1

has a total of n+ 1 steps U

[a]

and H

[b]

).

We denote this replicated set as [n+ 1]� S

n+1

:

Similarly, for action A3), in S

n�1

we replicate each path n � 2 times by sequentially marking

one of its H

[b]

steps or non�nal D

[c]

steps by z and denote this set as [n � 2] � S

n�1

; �nally, we

denote as b

2

[n� 2]� S

n�1

the set we obtain by taking b

2

equal copies of [n� 2]� S

n�1

:

Figure 3.5 illustrate sets S

n

; [2n� 1]� S

n

; [n+ 1]� S

n+1

and [n � 2]� S

n�1

when n = 2 and

a = c = 1 and b = 2; that is, when we have one colour for up and down steps and two colours for

the double horizontal steps. The set [n+ 1]� S

n+1

is represented by marking by z, in all possible

ways, the paths in S

n+1

. Obviously, in this case, [n� 2]� S

n�1

is empty.

In order to prove (3.4), we �rst de�ne LEV (p

l

) as the ordinate of the �nal point of a step p

l

;

then observe that a replicated path P in [2n� 1]� S

n

can be decomposed as follows:

P = p

1

� � �p

i

� � �p

j

� � �p

k

� � �p

m

where:

� 1 � i � j < k � m;

� the step p

j

is the step marked by x or y;

� the step p

i

is the last U

[a]

step preceding p

j+1

for which LEV (p

i

) = LEV (p

j

); when p

j

= U

[a]x

;

i = j;

� the D

[c]

step p

k

is the �rst step after p

j

for which LEV (p

k

) = LEV (p

j

)� 1:

We are now in a position to de�ne the desired bijection:

	 : (b+ 2ac)[2n� 1]� S

n

! [n+ 1]� S

n+1

[ b

2

[n� 2]� S

n�1



x

x

y y z

z

z

z

z

x z

z

zx

x x

zy

Figure 3.6: Bijection 	

1

for n = 2; a = c = 1 and b = 2.

x

x

y y
z

z

z

x x

x z

z

z
y

z

z

z

x

Figure 3.7: Bijection 	

2

for n = 2; a = c = 1 and b = 2.

by distinguishing three (pairwise disjoint) bijections 	

1

;	

2

;	

3

; such that 	 = 	

1

[	

2

[ 	

3

:

1) Bijection 	

1

: ac[2n�1]�S

n

! Q

1

where Q

1

� [n+1]�S

n+1

contains the paths in [n+1]�S

n+1

which contain the step pair U

[a]z

D

[c]

or the step triple U

[a]z

H

[b]

D

[c]

: We consider a replicated

path P in [2n� 1]� S

n

:

1.1) if p

j

= U

[a]x

; H

[b]x

or D

[c]y

then

	

1

(P ) = p

1

� � �p

i

� � �p

j

U

[a]z

D

[c]

p

j+1

� � �p

k

� � �p

m

;

1.2) if p

j

= H

[b]y

then

	

1

(P ) = p

1

� � �p

i

� � �p

j�1

U

[a]z

H

[b]

D

[c]

p

j+1

� � �p

m

;

In this case, illustrated in Figure 3.6, we essentially add a U

[a]

and aD

[c]

step to P obtaining a

path in Q

1

; since we can do this in ac di�erent ways we transform each path in ac[2n�1]�S

n

(that is, [2n�1]�S

n

replicated ac times) into a path in Q

1

: Vice versa, every path in Q

1

can

be transformed into a path in ac[2n� 1]�S

n

by deleting the pair U

[a]z

D

[c]

or by substituting

the triple U

[a]z

H

[b]

D

[c]

with the step H

[b]

and appropriately marking the step p

j

:

2) Bijection 	

2

: ac[2n� 1]� S

n

! Q

2

where Q

2

� [n+ 1]� S

n+1

(see Observation 3.1 below).

We consider a replicated path P in [2n� 1]� S

n

:

2.1) if p

j

= U

[a]x

; H

[b]x

or D

[c]y

then

	

2

(P ) = p

1

� � �p

z

i

� � �p

j

U

[a]

P

0

D

[c]

p

k

� � �p

m

;

where P

0

= p

j+1

� � �p

k�1

;

2.2) if p

j

= H

[b]y

then

	

2

(P ) = p

1

� � �p

z

i

� � �p

j�1

U

[a]

P

0

D

[c]

p

j

p

k

� � �p

m

;

where P

0

= p

j+1

� � �p

k�1

;



This case is illustrated in Figure 3.7; we essentially add a U

[a]

and a D

[c]

step to P obtaining a

path in Q

2

; since we can do this in ac di�erent ways, we transform each path in ac[2n�1]�S

n

(that is, [2n � 1] � S

n

replicated ac times) into a path in Q

2

: The inverse mapping 	

�1

2

is

now de�ned according to the following observation, which allow us to univocally determine

the step p

j

:

Observation 3.1 Let Q = 	

2

(P ) be a path in Q

2

: Then it contains the step U

[a]z

not followed

by either the D

[c]

step or the step pair H

[b]

D

[c]

(these cases have already been considered in

bijection 	

1

). Moreover, let q

l

be the �rst (not horizontal) Q

0

s step after q

i

= p

z

i

= U

[a]z

such

that LEV (q

l

) = LEV (p

i

): Then the following three cases are possible:

{ q

l

= U

[a]

; this implies p

j

= p

i

in P ;

{ q

l

q

l+1

= D

[c]

U

[a]

; this implies p

j

= q

l

in P ;

{ q

l

q

l+1

= D

[c]

H

[b]

and q

l+2

6= H

[b]

; this implies p

j

= q

l+1

in P:

Once p

j

has been determined, we can transform each path in Q

2

into a path in ac[2n�1]�S

n

:

3) Bijection 	

3

: b[2n� 1]� S

n

! Q

3

[ Q

4

[ b

2

[n� 2]� S

n�1

(see �gure 3.8).

This bijection can be de�ned by distinguishing three (pairwise disjoint) bijections 	

3;1

;	

3;2

;	

3;3

;

such that 	

3

= 	

3;1

[	

3;2

[	

3;3

: We consider a replicated path P in [2n� 1]� S

n

:

x

y y

x

x

y y

x x

x

y

x x

x

y

x
z

z

z

z

z

z

z

z

z

z

z

z

z

z

z

z

z

z

x

x

Figure 3.8: Bijection 	

3

for n = 2; a = c = 1 and b = 2.

3.1) Bijection 	

3;1

: T

1

! Q

3

: Here T

1

� b[2n� 1] � S

n

(that is, [2n� 1]� S

n

replicated b

times) contains paths having p

j

= U

[a]x

; H

[b]x

or D

[c]y

and Q

3

� [n+ 1]�S

n+1

contains

paths having the step H

[b]z

:

	

3;1

(P ) = p

1

� � �p

i

� � �p

j

H

[b]z

p

j+1

� � �p

k

� � �p

m

:

In this case, we essentially add a H

[b]

step to P obtaining a path in Q

3

; since we can

do this in b di�erent ways we transform each path in T

1

into a path in Q

3

: Vice versa,

every path in Q

3

can be transformed in a path in T

1

by deleting the step H

[b]z

and by

marking the previous step: i) by x; if it is an up or an horizontal step, ii) by y; if it is a

down step.



3.2) Bijection 	

3;2

: T

2

! Q

4

: Here T

2

� b[2n � 1] � S

n

contains paths having p

j�1

p

j

=

U

[a]

H

[b]y

and Q

4

� [n+ 1]� S

n+1

(see Observation 3.2 below):

	

3;2

(P ) = p

1

� � �p

z

i

� � �p

j�1

P

0

H

[b]

H

[b]

p

k

� � �p

m

;

where P

0

= p

j+1

� � �p

k�1

;

In this case we essentially add a H

[b]

step to P obtaining a path in Q

4

; since we can

do this in b di�erent ways we transform each path in T

2

into a path of Q

4

: The inverse

mapping 	

�1

3;2

is now de�ned according to the following observation, which allow us to

univocally determine the step p

j

:

Observation 3.2 Let Q = 	

3;2

(P ) be a path in Q

4

: Then it contains the step U

[a]z

not

followed by either the D

[c]

step or the step pair H

[b]

D

[c]

(these cases have already been

considered in bijection 	

1

). Moreover, let q

l

be the �rst (not horizontal) Q

0

s step after

q

i

= p

z

i

= U

[a]z

such that LEV (q

l

) = LEV (p

i

); then q

l

q

l+1

: : : q

l+r

= D

[c]

H

[b]

: : :H

[b]

with r > 1; this implies p

j

= q

l+r

in P:

Once p

j

has been determined, we can transform each path in Q

4

into a path in T

2

:

3.3) Bijection 	

3;3

: T

3

! b

2

[n � 2]� S

n�1

: Here T

3

� b[2n� 1]� S

n

contains paths having

p

j�1

p

j

= H

[b]

H

[b]y

or p

j�1

p

j

= D

[c]

H

[b]y

:

	

3;3

(P ) = p

1

� � �p

z

j�1

p

j+1

� � �p

m

:

In this case we essentially eliminate a H

[b]

step from P in correspondence with step

pairs H

[b]

H

[b]y

or D

[c]

H

[b]y

; thus obtaining a path in [n � 2] � S

n�1

; since there are

b(n � 2)S

n�1

such path pairs (see Theorem 2.2) we transform each path in T

3

into a

path in b

2

[n� 2]� S

n�1

: The vice versa is obvious.

Finally, we have that Q

1

; Q

2

; Q

3

; Q

4

and T

1

; T

2

; T

3

are disjoint sets and Q

1

[Q

2

[Q

3

[Q

4

=

[n+ 1]� S

n+1

; T

1

[ T

2

[ T

3

= b[2n� 1]� S

n

.
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