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Abstract. We present a family of number sequences which interpolates between the sequences B(n), of Bell numbers,

and n!. It is de�ned in terms of permutations with forbidden patterns. The introduction, as a parameter, of the number

k of left{to{right minima yields an interpolation between Stirling numbers of the second kind S(n; k) and of the �rst

kind (signless) c(n; k). Moreover, q-counting the restricted permutations by inversions gives an interpolation between

the usual q-analogues of these numbers.

R�esum�e. Nous pr�esentons une famille de suites de nombres qui interpole entre la suite B(n) des nombres de Bell et

la suite n!. Cette famille est d�e�nie en termes de permutations �a motifs interdits. L'introduction comme param�etre

du nombre d'�el�ements saillants minimums de gauche a droite donne une interpolation plus �ne entre les nombres de

Stirling de deuxi�eme esp�ece S(n; k) et de premi�ere esp�ece (sans signe) c(n; k). De plus, un q-comptage des permutations

selon leurs inversions donne une interpolation entre les q-analogues habituels de ces nombres.

1 Introduction

The study of Stirling numbers and their q{analogues dates back a long time; in the last twenty years

mathematicians were interested in models giving combinatorial interpretations of classical relations involving

the q{analogues of Stirling numbers. In 1961, Gould [11] gives his expression in terms of symmetric functions;

a combinatorial treatment of q{Stirling numbers of second kind, involving �nite dimensional vector spaces

over a �eld K

q

of cardinality q appears in [16, 17, 18]; Garsia and Remmel [9] introduce particular rook

placements in Ferrers boards. Later, Leroux [13] introduces 0{1 tableaux to prove the conjecture of Butler

[6] concerning the q{log concavity for q{Stirling numbers and De M�edicis and Leroux [14, 15] study and

generalize q{Stirling numbers of both kinds, using this interpretation.

On the other hand the study of permutations with forbidden subsequences made meaningful progresses

in the last thirty years: the n{th Catalan number is the common value for the number of permutations with

a single forbidden subsequence of length three [21]; some results for permutations avoiding a single forbidden

subsequence of length four can be found in [4, 5, 10]. Concerning permutations avoiding a single subsequence

of length greater than four, Regev [19] obtained an interesting result, that is: the number of permutations

of length n avoiding the pattern 1 : : :(k + 1) is asymptotically equal to c(k � 1)

2n

n

(2k�k

2

)=2

, where c is a

constant. Pell, Fibonacci, Motzkin and Schr�oder numbers are sequences which count permutations avoiding

more than one forbidden subsequence. We refer to [12] for an exhaustive survey on the results about

permutations with forbidden subsequences.

In this paper we put these two research areas together and give combinatorial interpretations of q{

analogues of Stirling numbers of both kinds in terms of permutations with forbidden subsequences. From

another point of view it can be seen as a continuation of the two previous works [2, 3], here, the interpolation

is between Bell numbers and factorials, and, moreover, between S(n; k) and c(n; k) and their q{analogues.
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2 Notations and De�nitions

In this Section we recall the concepts of generating tree for a set of succession rules and of permutations

with forbidden subsequences. Moreover, we generalize some classical de�nitions about permutations.

The concept of generating tree was introduced in [7] for the study of Baxter permutations and later

applied to the study of various permutations with forbidden subsequences by di�erent authors. Generat-

ing trees and succession rules can be used in combinatorics to deduce enumerative results about various

combinatorial objects [1].

A generating tree is a rooted, labeled tree in which the size and labels of the set of children of each node

x are determined solely from the label of x. Thus, any particular generating tree can be speci�ed by a set

of succession rules, that is, a recursive de�nition, consisting of

1. the basis, the label of the root,

2. the inductive step, a set of succession rules that yields a multiset of labeled children which depends

solely on the label of the parent.

A succession rule can be used to describe the growth of the objects to which it is related and also to

obtain the number sequence counting the objects themselves. The introduction of a parameter, say j, in

a succession rule allows us to obtain a denumerable family of number sequences. In [2] the introduction

of such a parameter into the classical succession rule for the Motzkin numbers allowed the authors to

de�ne number sequences such that the n{th number of each of them is lying between the n{th Motzkin

and Catalan numbers. Moreover, the permutations enumerated by each number sequence are identi�ed:

they are permutations with two forbidden subsequences; the �rst, of length three, is �xed and the second

has a length which increases with j. In [3] the introduction of the parameter j in the classical succession

rule for the Catalan numbers de�nes number sequences such that the n{th term interpolates between the

n{th Catalan number and n!. The objects that each sequence counts are permutations with j! forbidden

subsequences of length (j + 2).

A permutation � = � (1)� (2) : : : :� (n) on [n] = f1; 2; : : : ; ng is a bijection from [n] to [n]. Let S

n

be the

set of permutations on [n]. A permutation � 2 S

n

contains a subsequence of type � 2 S

k

i� a sequence of

indices 1 � i

1

< i

2

< : : : < i

k

� n exists such that � (i

1

) � (i

2

) : : : � (i

k

) is ordered as � . We denote the set

of permutations of S

n

avoiding subsequences of type � by S

n

(�).

Example 2.1 The permutation 58132674 belongs to S

8

(4321) because none of its subsequences of length

4 are of type 4321. This permutation does not belong to S

8

(4132) because there exist some subsequences of

type 4132 like, for example, �(2)�(3)�(6)�(8) = 8164.

A barred forbidden subsequence �� on [k] is a permutation of S

k

having a bar over one of its elements.

Let � be a permutation on [k] identical to �� but unbarred and �̂ be the permutation on [k � 1] made up

of the (k � 1) unbarred elements of �� , rewritten to be a permutation on [k � 1]. A permutation � 2 S

n

contains a type �� subsequence if � contains a type �̂ subsequence that, in turn, is not a subsequence of a

type � subsequence. We denote the set of permutations of S

n

avoiding type �� subsequences by S

n

(��).

Example 2.2 If �� = 4

�

132 then � = 4132 and �̂ = 321. The permutation � = 58132674 belongs to S

8

(��)

because all its subsequences of type �̂ : � (1)� (4)� (5) = 532, � (2)� (4)� (5) = 832, � (2)� (6)� (8) = 864

and � (2)� (7)� (8) = 874 are subsequences of a sequence of type � because: � (1)� (3)� (4)� (5) = 5132,

� (2)� (3)� (4)� (5) = 8132, � (2) (4)� (6)� (8) = 8364 and � (2)� (5)� (7)� (8) = 8274 are of type � .

If we have the set �

1

2 S

k

1

; : : : ; �

p

2 S

k

p

of barred or unbarred permutations, we denote the set S

n

(�

1

)\

: : : \ S

n

(�

p

) by S

n

(�

1

; : : : ; �

p

). We call the family F = f�

1

; : : : ; �

p

g a family of forbidden subsequences,

the set S

n

(F ), a family of permutations with forbidden subsequences and S(F ) =

P

n�1

S

n

(F ) a class of

permutations with forbidden subsequences. For � 2 S

n

, we call sites the positions lying on the left of �(i),



1 � i � n, and on the right of �(n), so the site i is on the left of �(i) and the site (n + 1) on the right of

�(n). The site i of � 2 S

n

(F ) is active if the insertion of (n+1) into the position between �(i� 1) and �(i)

gives a permutation belonging to the set S

n+1

(F ); otherwise it is said to be inactive.

Example 2.3 The permutation � = 58132674 2 S

8

(4

�

132) has 4 active sites that is the sites: 3, 5, 8 and

9. Indeed the permutations: 589132674, 581392674, 581326794 and 581326749 belong to S

9

(4

�

132), while

the remaining sites are inactive, for example 581326974 has the subsequence 974 of type 321 but it is not a

subsequence of a sequence of type 4132.

Let � be a permutation on [n]. The element �(i), 1 � i � n, is a left{to{right minimum if �(i) < �(t);

for all t 2 [i + 1; n]. This means that an index i

1

, i + 1 � i

1

� n, such that �(i) > �(i

1

) does not exist.

We propose to generalize the concept of left{to{right minimum as follows: let � be a permutation on [n];

the element �(i), 1 � i � n, is a j{th kind left{to{right minimum if and only if a sequence of indices of

length j: i

1

; � � � ; i

j

, i+ 1 � i

1

< � � � < i

j

� n, such that �(i) > �(i

l

), 1 � l � j does not exist. This implies

that the j rightmost elements of � are trivialy j{th kind left{to{right minima. Of course a left{to{right

minimum is the same as a �rst kind left{to{right minimum while each element of the permutation is an

1{kind left{to{right minimum. Hence the number of 1{kind left{to{right minima is the length of the

permutation.

Example 2.4 The permutation � = 58132674 has:

� 3 left{to{right minima: �(3) = 1, �(5) = 2 and �(8) = 4;

� 6 second kind left{to{right minima: �(3) = 1, �(4) = 3 �(5) = 2, �(6) = 6, �(7) = 7 and �(8) = 4;

� 8 1{kind left{to{right minima.

Let � be a permutation on [n]. An inversion is an ordered pair of indices: (s; t), 1 � s < t � n, such

that �(s) > �(t). We say that the couple of indices (s; t), 1 � s < t � n, such that �(s) > �(t), is a j{th

kind inversion if �(t) is a j{th kind left{to{right minimum. Following this de�nition the classical concept of

an inversion becomes an 1{kind inversion, while the number of inversions with respect to the left{to{right

minima are �rst kind inversions.

Example 2.5 The permutation � = 58132674 of Example 2.4 has:

� 9 �rst kind inversions: (1; 3),(1; 5),(1; 8),(2; 3),(2; 5),(2; 8),(4; 5),(6; 8),(7; 8);

� 13 second kind inversions: (1; 3),(1; 4),(1; 5),(1; 8),(2; 3),(2; 4),(2; 5),(2; 6),(2; 7),(2; 8),(4; 5),(6; 8),(7; 8);

� 13 1{kind inversions: (1; 3),(1; 4),(1; 5),(1; 8),(2; 3),(2; 4),(2; 5),(2; 6),(2; 7),(2; 8), (4; 5),(6; 8),(7; 8).

3 Bell permutations and set partitions

The Stirling numbers of the second kind, denoted by S(n; k), for n � k � 0, count the ways of parti-

tioning a set of n objects into k nonempty subsets, called blocks. The number of partitions of an n{element

set is given by the sum over k, 0 � k � n, of S(n; k); this de�nes the n{th Bell number, denoted by B

n

[20]. For example, there are 7 ways of partitioning a 4{element set into two blocks: f1; 2; 3g f4g; f1; 2; 4g

f3g; f1; 3; 4g f2g; f1; 2g f3; 4g; f1; 3g f2; 4g; f1; 4g f2; 3g; f1g f2; 3; 4g, and the total number of partitions

is B

4

=

4

P

k=0

S(4; k) = 0 + 1 + 7 + 6+ 1 = 15. Note that S(0; 0) = B(0) = 1.

The standard representation of a given set partition consists in using the increasing order within each

block and, in listing the blocks according to the increasing order of their minimum elements. We consider

a new representation of the partition by moving the minimum element from the �rst to the last position in

each block and then erasing the curly braces. The sequence of elements thus obtained is a permutation such

that its (�rst kind) left{to{right minima are exactly the minimum elements of the blocks in the partition.



Example 3.1 Let us consider the following partition of an 8{element set into three blocks: f1; 5; 8g f2; 3g

f4; 6; 7g:The new representation described above is the permutation: 5 8 1 3 2 6 7 4 which has exactly three

(underlined) left{to{right minima.

Proposition 3.1 Permutations in S

n

(4

�

132) are counted by the n{th Bell number (this is the reason why we

call them Bell permutations), and S(n; k) counts the permutations in S

n

(4

�

132) with k left{to{right minima.

Proof. Following the previous discussion, we observe that the permutation � obtained from a partition of

an n{element set contains a subsequence of type �̂ = 321 if and only if it is a subsequence of any sequence

of type � = 4132. In other words, three indices i

1

, i

2

, i

3

, i

1

< i

2

< i

3

, such that � (i

1

) > � (i

2

) > � (i

3

)

can be found in � if and only if it exists an index j, i

1

< j < i

2

< i

3

, such that � (i

1

)�(j)� (i

2

) � (i

3

) is of

type 4132. Such a condition is described by the forbidden subsequence 4

�

132. Let � (i

1

) ; � � � ; � (i

k

) be the k

left{to{right minima of �, then � (i

l

), 1 � l � k, is the �rst element of the l

th

block in the corresponding

partition; while the elements between � (i

l�1

) and � (i

l

) are all the elements belonging to the l

th

block of

the partition. Permutations in S

n

(4

�

132) with k left{to{tight minima are counted by the Stirling numbers.

So, S

n

(4

�

132) is enumerated by the Bell numbers.

The �rst construction we take into consideration for the class S(4

�

132) is a recursive construction which

allows to obtain S

n+1

(4

�

132), starting with S

n

(4

�

132). It uses the concept of active site of a permutation (see

Fig. 1: the active sites are represented by \ ").

Proposition 3.2 Let � 2 S

n

(4

�

132) be a permutation with k � 2 active sites, that is the sites i

1

, i

2

; : : : ;

i

k�2

, n and (n + 1). Then the number of active sites is still k in the permutation obtained by inserting

(n+ 1) into any active site di�erent from the rightmost one; the permutation obtained from � by inserting

(n+ 1) into the site (n + 1) has k + 1 active sites: i

1

; i

2

; : : : ; i

k�2

, n, (n+ 1) and (n+ 2).

Proof. Let i

1

< i

2

< � � � < i

k�2

< n be the indices of the k � 1 left{to{right minima of �, namely

�(i

1

); �(i

2

); � � � ; �(i

k�2

); �(n). The active sites of � are the sites on the immediate left of each left{to{right

minimum and on the right of the last element, that is, active sites of � are i

1

, i

2

; : : : ; i

k�2

, n and (n + 1).

Indeed, the insertion of (n+ 1) into the site (n + 1) does not cause any occurrence of the forbidden subse-

quence 321; by inserting (n+ 1) into the site l, l = i

1

; � � � ; i

k�2

; n we can obtain the forbidden subsequences

321 if and only if there exist two indices t

1

, t

2

such that l < t

1

< t

2

and (n+ 1) > �(t

1

) > �(t

2

), but in this

case (n+ 1)�(l)�(t

1

)�(t

2

) is of type 4132. Each other site is inactive: if a site lies on the left of �(i) that is

not a left{to{right minimum, then there exists i

1

> i : �(i) > �(i

1

), and the insertion of (n+ 1) on the left

of �(i) gives (n+ 1)�(i)�(i

1

), that is a decreasing sequence of length three, with (n+ 1) and �(i) adjacent

elements and we get a forbidden subsequence 321. Observe that the insertion of (n+1) into the site (n+1)

increases the number of left{to{right minima of � while each other insertion does not change this number

in the permutation.

If we classify the permutations of S

n

(4

�

132), n � 1, according to their number of active sites then we can

synthetically describe the obtained recursive construction by the succession rule:

(

basis : (2)

inductive step : (k)! (k)

k�1

(k + 1);

(3.1)

since S

1

(4

�

132) = f1g has two active sites.

The expansion of this succession rule gives the generating tree of Fig. 1. Consequently if p

n;k

=

jf� 2 S

n

(4

�

132) : � has k active sitesgj then

(

p

1;2

= 1;

p

n+1;k

= p

n;k�1

+ (k � 1)p

n;k

; 2 � k � (n + 2);

(3.2)

which is the recursive relation of the Stirling numbers of the second kind [8] (replace p

n;k

by S(n; k� 1)).
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Figure 1: The generating tree for 4

�

132{avoiding permutations.

Let us note that the active sites of a permutation belonging to S(4

�

132) are the sites on the immediate

left of each left{to{right minimum and the one on the right of the last element. Therefore the number of

active sites in a permutation is the number of its left{to{right minima plus one.

The second approach we propose in order to generate S(4

�

132) permutations, is to construct S

n+1

(4

�

132)

starting from S

1

(4

�

132), S

2

(4

�

132); � � �, S

n

(4

�

132). The permutations in S

n+1

(4

�

132) with k left{to{right minima

can be obtained in the following way. For each value m such that 0 � m � n:

� extract a subset of m elements from the set f2; � � � ; n+ 1g,

� construct the permutations in S

m

(4

�

132) with (k � 1) left{to{right minima,

� add the element 1 on its left,

� place on the left of 1 the remaining (n�m) elements in an increasing order.

The increasing order is required to avoid the forbidden subsequence 321 that would be obtained if there

were two elements �(t

1

), �(t

2

) such that �(t

1

) > �(t

2

) and t

1

< t

2

� n �m. This means that:

p

n+1;k+1

=

n

X

m=0

 

n

m

!

p

m;k

; k � m:

As p

n;k

= S(n; k � 1) we obtain a combinatorial interpretation of the well known relation involving the

second kind signless Stirling numbers [8] by means of Bell permutations.



4 Generalized Bell permutations

In this Section we introduce a parameter j in the succession rule (3.1) giving the Bell numbers. Each

value of j yields a number sequence such that the n{th term lies between B

n

and n!. We are interested in

characterizing the permutations enumerated by each number sequence.

Let us carefully examine the succession rule (3.1): the \exponents" of the terms on the right hand side

of the inductive step are k� 1 for the label (k) and 1 for the label (k+ 1). We can make these \exponents"

depend on a parameter j, thus giving the \exponent" k � j to the label (k) and j to the label (k + 1);

moreover if k � j then only the label (k + 1) is obtained exactly k times. The exact form of the succession

rule we obtain is

8

>

<

>

:

basis : (2)

inductive step : (k)! (k + 1)

k

; k � j

inductive step : (k)! (k)

k�j

(k + 1)

j

; k > j:

(4.3)

It is easy to verify that if j = 1, then the succession rule (4.3) reduces to (3.1).

We recall that the \exponent" of a label in a succession rule means the number of times the label must

be repeated. For example, the \exponent" of the label (k + 1) in the �rst inductive step is k because k is

less or equal to j. Also the number of terms on the right hand side of the inductive step in a succession rule

must be exactly k. The idea is to perform (4.3) on permutations and try to characterize the class we obtain.

The �rst step is to give an interpretation of (4.3) in terms of active sites in a permutation; we have to decide

how the active sites are modi�ed when a new element is added into a permutation with a �xed number of

active sites. The second step is to describe the resulting permutations in terms of forbidden subsequences.

We refer to the �rst active site as the leftmost active site in the permutation and so on, and we make the

following choices:

� if a new element is inserted in the l

th

active site, 1 � l � k� j, then the site on the left of the inserted

element is inactive and the number of active sites do not change in the new permutation,

� if a new element is inserted in the l

th

active site, k � l � k � j + 1, then the site on the left of the

inserted element is also active and the number of active sites grows by one.

In other words, the permutation obtained from � of length n with k � 1 left{to{right minima of j{th

kind, by inserting (n + 1) into its j rightmost active sites has its number of active sites increased by one;

while the permutation obtained by inserting (n+1) into the remaining active sites has an unchanged number

of active sites.

We now show that the permutations we obtain avoid the subsequences (j+2)(j+1)� where � 2 S

j

and

the elements corresponding to (j + 2) and (j + 1) are consecutive. In terms of permutations with forbidden

subsequences such a condition is given by the union of j sets of permutations with forbidden subsequences:

S

j

i=1

S

�

�

F

j

i

�

where

�

F

j

i

is a set of barred subsequences �� = (j + 3)

�

i(j + 2)�

i

with �

i

a permutation on the

set f(j + 1); � � � ; (i+ 1); (i� 1); � � � ; 1g; so

�

�

�

�

F

j

i

�

�

�
= j! and j�� j = j + 3.

Example 4.1 Let j = 2 then 1 � i � 2. The set

�

F

2

2

obtained for i = 2 is f5

�

2431; 5

�

2413g.

Let us note that in the union i can assume all values between 1 and j. This means that we are not

interested in the value of the element lying between (j + 3) and (j + 2), but at least one element must

exist between (j + 3) and (j + 2). Such a condition avoids subpatterns of two adjacent decreasing elements

having at least j smaller elements on their right. Moreover, i cannot be equal to (j + 1) because the

subsequence (j+3)(j+1)� (� being a permutation of length j) is of the forbidden type. Let S

j

be the class

of permutations de�ned by S

j

=

S

n�1

S

j

i=1

S

n

�

�

F

j

i

�

. We show that the class S

j

has a recursive construction

described by (4.3).



Proposition 4.1 Let � 2

S

j

i=1

S

n

�

�

F

j

i

�

, j � 1, be a permutation with k � 2 active sites: i

1

, : : : ; i

k�j

;

(n� (j � 2)); : : : ; (n+ 1). Then the number of active sites does not change in the permutation obtained by

inserting (n+ 1) into the site i

t

, t = 1; � � � ; k� j; the permutation obtained from � by inserting (n+ 1) into

the site (n+ 1� t), 0 � t � j � 1, has k + 1 active sites: i

1

; : : : ; i

k�j

; (n� (j � 2)); : : : ; (n+ 1); (n+ 2).

Proof. The j rightmost sites of � that is (n� (j� 2)); : : : ; (n+1) are always active, if they exist, because

the insertion of (n+1) into the site (n+1� t), 0 � t � j� 1, cannot create any occurrence of any forbidden

subsequences. Thus, the element (n + 1) has exactly t elements on its right so it is the �rst and largest

element of a sequence of length (t+1) � j and any unbarred forbidden subsequence has length (j+2). The

site i

1

is still active if and only if a sequence of indices i

2

; � � � ; i

j+1

, i

1

+ 1 � i

2

< � � � < i

j+1

� n, such that

�(i

1

) > �(i

l

), 2 � l � j + 1, does not exist, meaning that an active site must lie on the left of a j{th kind

left{to{right minima.

Let the k active sites of a permutation � be i

1

; : : : ; i

k�j

; (n � (j � 2)); : : : ; (n + 1). Observe that the

site i

k�j

is the site (n � j + 1), but it behaves as the sites i

t

, 1 � t � k � j � 1. The active sites of the

permutation obtained from � by inserting (n+ 1) into the site (n+ 1� t), 0 � t � j � 1, are: i

1

; : : : ; i

k�j

;

(n � (j � 2)); : : : ; (n + 1); (n + 2). The site (n + 2 � t), 0 � t � j, is trivialy active; the remaining active

sites are those that were active in the original permutation as the new inserted element (n+1) plays no role

in the creation of any forbidden subsequence. The sites that in � were inactive are always inactive because

(n+ 1) cannot play the role of the barred element in a forbidden subsequence.

By inserting (n+ 1) into the site i

t

, 1 � t � k � j, the active sites in the new permutation are: i

1

; : : : ;

i

t�1

; (i

t

+ 1); : : : ; (i

k�j

+ 1); (n� (j� 3)); : : : ; (n+2). The site on the left of (n+ 1) is inactive because we

would have (n+ 2)(n+ 1)�, j�j = j, which is forbidden. The sites that were active in � are always active

because if they do not create any forbidden subsequences in �, then they do not create any problem in the

new permutation and the inactive sites in � are still inactive in the new permutation.

5 Bicolored set partitions and permutations

In Section 3 we illustrated the case j = 1, that is we showed that 4

�

132{avoiding permutations are counted

by the Bell numbers and gave a bijection with set partitions. For j = 2 we show that the number of

(5

�

1432; 5

�

1423) or (5

�

2431; 5

�

2413){avoiding permutations are the values of Bell polynomials whose (n� 1){th

term is de�ned by

P

k�0

2

k

S(n� 1; k) ([22], sequence M1662). These numbers count bicolored set partitions

(that is to say each block can be red or black) and there is a bijection between these two classes of structures.

This correspondence can be easily obtained by applying the succession rules

8

>

<

>

:

basis : (2)

inductive step : (2)! (3)(3);

inductive step : (k)! (k)

k�2

(k + 1)

2

; k > 2;

(5.4)

to the bicolored set partitions, obtaining a constructive bijection. In bicolored set partitions the label k

represents the number of blocks plus two. Given an n{element set bicolored partition with k � 2 blocks,

labeled by (k), we can add on its right the block f(n + 1)g that can be red or black and in this case the

number of blocks becomes k� 1, so the label of these new partitions is (k+1); or we can insert (n+1) into

any of the blocks of the partition, the color remaining the same. This bijection is represented in Fig. 2, where

the red blocks are those with the underlined elements. In an n{element bicolored set partition with k blocks,

let i be a number belonging to the m

th

block, 1 � m � k, which is di�erent from the minimum element of

the block. We then de�ne the weighted inversions related to i as: the number of blocks on the right of its

own block such that their minimum element is smaller than i, plus 2. The total weighted inversions of a

partition is given by the sum, over each i satisfying the above condition, of its weighted inversions.
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Figure 2: The �rst four levels of the generating tree for permutations in S

2

=

S

n�1

(S

n

(5

�

1432; 5

�

1423)

S

S

n

(5

�

2431; 5

�

2413)) and the constructive bijection with the bicolored set parti-

tions.



We have the following parameter correspondences:

Bicolored set partitions S

2

-permutations

cardinality of the partitioned set length of the permutations+1

number of black blocks number of left{to{right minima-1

number of blocks number of second kind left{to{right minima-1

number of red blocks + number of

weighted inversions

number of second{kind inversions

We do not know of a direct bijection between these two classes of structures.

If j = 1, then we obtain all permutations and n! appears; for each other value of j � 3 we obtain

sequences of numbers such the n{th term of each of them is between B

n

and n! (see Fig. 3). These sequences

do not appear in the Sloane{Plou�e book [22]: \The Encyclopedia of Integer Sequences", and verify the

following property: the (j+2){th number of the (j+1){th sequence is obtained from the (j+2){th number

of the (j){th sequence by adding j!.

S  (52431,52413)n

j = Sn

S  (615432,615423,615342,615324,615243,615234)
S  (625431,625413,625341,625314,625143,625134)
S  (635421,635412,635241,635214,635142,635124)

n

n

n

...

...

...

...

...

...

S  (51432,51423)

S  (4132)j = 1

j = 3

n

n

Index Family  of  permutations

.

j = 4

.

.

+1!

+2!

+3!

1  2  6  22    94  454  2430  14214    89918    610182     4412798

1  2  6  24  114  618  3732  24702  177126  1363740  11195286

1  2  5  15    52  203    877    4140    21147    115975       678570

1  2  6  24  120  696  4536 32568  254136  2133816  19130040

1  2  6  24  120  720  5040  40320  362880  3628800  39916800

Numbers

1  2  6  24  120  720  4920  37320  309120  2763720  26440920

j = 2

j = 5

. .
.
.

+4!

.

.

.

.

.

.
.

Figure 3: Table of permutations.

6 Enumerative results for S

j

-permutations

For each j, we are interested in the enumeration of the permutations in S

j

according to their length,

the number of left{to{right minima and the number of j{th kind inversions. The reason we introduce this

parameter is to give a combinatorial interpretation of the q{analogue that we obtain in a natural way from

(4.3) by giving a \weight" to the label on the right{hand side of each inductive step in (4.3). More precisely

the i{th child of a label (k) q{counts for k� i; the result of this \weight assignment procedure" is expressed

in Proposition 6.1.

Let � 2 S

j

and �

l

be the permutation obtained from � by inserting the next element into the l

th

active

site, from left to right. We denote the length of � by n(�), the number of its left{to{right minima by rm(�)

and the number of its j{th kind inversions by inv

j

(�).

From (4.3) we deduce that the sites in a permutation � 2 S

j

with length k � 1 � j are all active, so �

is the father of k permutations obtained by inserting the element k into its �rst, second, : : : ; k

th

sites. The

parameters change as follows in the new permutation:

n(�

l

) = n(�) + 1;

(

rm(�

l

) = rm(�); 1 � l � k � 1;

rm(�

k

) = rm(�) + 1; l = k;

inv

j

(�

l

) = inv

j

(�) + k � l;

and the number of active sites becomes k + 1.



A permutation � with k > j active sites is the father of k permutations obtained by inserting the next

element into each of its active sites: i

1

; i

2

; : : : ; i

k�j

; (n(�)� (j� 2)); : : : ; (n(�)+ 1). Again the parameters

in the new permutations change as follows:

� for the leftmost (k � j) active sites:

n(�

l

) = n(�) + 1; rm(�

l

) = rm(�); inv

j

(�

l

) = inv

j

(�) + k � l;

and the number of active sites is unchanged;

� for the remaining active sites:

n(�

l

) = n(�) + 1;

(

rm(�

l

) = rm(�); k � j + 1 � l � k � 1;

rm(�

k

) = rm(�) + 1; l = k;

inv

j

(�

l

) = inv

j

(�) + k � l;

and the number of active sites increases by one unit.

Let a

j

k

(x; y; q) be the generating function of S

j

{permutations with k active sites according to their length

(x), the number of left{to{right minima (y) and the number of j{th kind inversions (q). The above consid-

erations on the parameter modi�cations yield the following recursive relations for a

j

k

(x; y; q):

8

>

<

>

:

a

j

2

(x; y; q) = xy;

a

j

k

(x; y; q) = xya

j

k�1

(x; y; q) + xq[k � 2]

q

a

j

k�1

(x; y; q); 3 � k � j;

a

j

k

(x; y; q) = xya

j

k�1

(x; y; q) + xq[j � 1]

q

a

j

k�1

(x; y; q)+ xq

j

[k � j]

q

a

j

k

(x; y; q); k � j + 1;

(6.5)

where [i]

q

denotes the classical q{analogue of i that is [i]

q

= 1 + � � �+ q

i�1

=

q

i

�1

q�1

.

Solving the recursions, we obtain the following:

Proposition 6.1 The generating function a

j

k

(x; y; q) for S

j

{permutations verify:

a

j

k

(x; y; q) = x

k�1

k�2

Q

i=0

(y + q[i]

q

) ; 2 � k � j;

a

j

k

(x; y; q) = x

k�1

(y + q[j � 1]

q

)

k�j

j�2

Q

i=0

(y+q[i]

q

)

k�j

Q

i=1

(1�xq

j

[i]

q

)

; k � j + 1:

The coe�cient [x

n

y

m

]a

j

k

(x; y; q) gives a polynomial in q{counting the S

j

{permutations with length n, having

m left{to{right minima and k active sites, according to their number of j{th kind inversions. Let c

q

[h; i] and

S

q

[h; i] be the classical q{analogues of the (signless) Stirling numbers of the �rst and second kind respectively,

as de�ned in [14, 15]. These polynomials are characterized by:

h

P

i=0

c

q

[h; i]z

h�i

y

i

=

h�1

Q

i=0

(y + [i]

q

z) ;
(6.6)

P

i�h

S

q

[i; h]z

i�h

=

h

Q

i=1

1

1�z[i]

q

:

(6.7)

Corollary 6.2 Let a

(k;j)

n;m

(q) = [x

n

y

m

] a

j

k

(x; y; q), m � k � 1; then we have:

a

(k;j)

n;m

(q) = �

n;k�1

c

q

[k � 1; m]q

k�1�m

; 2 � k � j;

(6.8)

a

(k;j)

n;m

(q) = S

q

[n+ 1� j; k� j]q

j(n+1�k)+(k�m�1)

([j � 1]

q

)

k�j�m

j�1

X

i=0

 

k � j

m� i

!

c

q

[j � 1; i] ([j � 1]

q

)

i

;

k � j+1; (6.9)

where �

i;j

is the Kronecker delta.



Proof. The value of a

(k;j)

n;m

(q) in the case of 2 � k � j is an immediate consequence of (6.6). In the case of

k � j + 1, by applying (6.6) and (6.7) we can write:

a

j

k

(x; y; q) =

=x

k�1

 

k�j

P

t=0

�

k�j

t

�

q

t

([j � 1]

q

)

t

y

k�j�t

! 

j�1

P

i=0

c

q

[j � 1; i]q

j�1�i

y

i

! 

P

i�0

S

q

[i+ k � j; k� j]

�

xq

j

�

i

!

,

and the second equality can then be easily proved.

Let us now examine the polynomials a

(k;j)

n;m

(q) for some particular values of the parameter j.

� If j = 1, then equation (6.9) should be used and the result is di�erent from 0 if and only if the exponent

of ([j � 1]

q

) = ([0]

q

) is zero, that is k = m+ 1. Once n and m are �xed the only possibility is:

a

(m+1;1)

n;m

(q) = S

q

[n;m]q

n�m

:

This con�rms the results of Section 3 for the number of left{to{right minima in Bell permutations of

length n. Moreover it shows that the classical q{analogue of the Stirling numbers of the second kind,

S

q

[n;m], multiplied by q

n�m

, count restricted permutations according to �rst kind inversions.

� If j = 2 then equations (6.8) and (6.9) give:

(

a

(2;2)

1;1

(q) = 1;

a

(k;2)

n;m

(q) =

�

k�2

m�1

�

S

q

[n� 1; k � 2]q

2n+1�k�m

; k � 3:

By summing over k andm we obtain the polynomials for the permutations with forbidden subsequences

(5

�

1432; 5

�

1423) or (5

�

2431; 5

�

2413) of length n according to the number of their second kind inversions:

X

k�2

X

1�m�n

a

(k;2)

n;m

(q) =

n�1

X

k=0

S

q

[n� 1; k]q

2(n�1�k)

(1 + q)

k

; n � 2: (6.10)

This expression reduces to a value of the (n � 1){th Bell polynomials:

P

k�0

2

k

S(n� 1; k) for q = 1 as

said in Section 5, so (6.10) de�nes a q{analogue for these numbers.

� If j =1 then equation (6.8) gives:

a

(n+1;1)

n;m

(q) = c

q

[n;m]q

n�m

; n � 1:

This means that the classical q{analogue of the �rst kind signless Stirling numbers, c

q

[n;m], multi-

plied by q

n�m

correspond to q{counting the inversions in the permutations. A direct combinatorial

explanation can be given.

The meaning of \Stirling numbers interpolation" lies in the observation that the permutations of length

n having m left{to{right minima are counted by the second kind Stirling numbers for j = 1 and by the �rst

kind Stirling numbers for j =1. In the intermediate cases this number, p

(j)

n;m

, is such that S(n;m) � p

(j)

n;m

�

c(n;m), c(n;m) denoting the �rst kind signless Stirling numbers, and it veri�es the recursive relation:

p

(j)

n;m

= p

(j)

n�1;m�1

+

n

X

k=2

(k � 1)a

(k;j)

n�1;m

(1); (6.11)

where:

a

(k;j)

n�1;m

(1) =

8

>

<

>

:

c(n� 1; m); for 2 � k = n � j;

S(n� j; k� j)(j � 1)

k�j�m

j�1

P

i=0

�

k�j

m�i

�

c(j � 1; i))(j� 1)

i

; for k � j + 1:

Note that the sum in equation (6.11) reduces to a single term if j = 1 (namely, the term for k = m+1) and

if j = 1 (namely, the term for k = n). These two cases yield classical recurrence relations for the Stirling

numbers of the second kind, S(n;m), and unsigned �rst kind, c(n;m), respectively.



References

[1] E. Barcucci, A. Del Lungo, E. Pergola, R. Pinzani, A methodology for plane trees enumeration, Discrete

Mathematics, 180 (1998) 45{64.

[2] E. Barcucci, A. Del Lungo, E. Pergola, Permutations with one forbidden subsequence of increasing

length, Proceedings of 9

th

FPSAC, Wien (1997) 49{60.

[3] E. Barcucci, A. Del Lungo, E. Pergola, R. Pinzani, From C

n

to n!: permutations avoiding S

j

(j+1)(j+2),

Proceedings of 10

th

FPSAC, Toronto (1998) 31{41.

[4] M. B�ona, Permutations avoiding certain patterns. The case of length 4 and some generalizations,

Discrete Mathematics, 175 (1997) 55{67.

[5] M. B�ona, Exact enumeration of 1342{avoiding permutations; a close link with labelled trees and planar

maps, Journal of Combinatorial Theory Series A, 80 (1997) 257{272.

[6] L. M. Butler, The q{log concavity of q{binomial coe�cients, Journal of Combinatorial Theory Series

A, 54 (1990) 53{62.

[7] F.R.K. Chung, R.L. Graham, V.E. Hoggat, M. Kleiman, The number of Baxter permutations, Journal

of Combinatorial Theory, Series A, 24 (1978) 382{394.

[8] L. Comtet, Advanced Combinatorics, Reidel (1979).

[9] A. M. Garcia, J. B. Remmel, q{Counting rook con�gurations and a formula of Frobenius, Journal of

Combinatorial Theory Series A, 41 (1986) 246{275.

[10] I. M. Gessel, Symmetric functions and P{recursiveness, Journal of Combinatorial Theory Series A, 53

(1990) 257{285.

[11] H. W. Gould, The q{Stirling numbers of �rst and second kinds, Duke Math. Journal, 28 (1961) 281{289.

[12] O. Guibert, Combinatoires des permutations a motifs exclus en liaison avec mots, cartes planaires et

tableaux de Young, Th�ese de l'Univerist�e de Bordeaux I (1996).

[13] P. Leroux, Reduced matrices and q{log concavity properties of q{Stirling numbers, Journal of Combi-

natorial Theory Series A, 54 (1990) 64{84 (1990).

[14] A. De M�edicis, P. Leroux, A uni�ed combinatorial approach for q-(and p; q{) Stirling numbers, Journal

of Statistical Planning and Inference, 34 (1993) 89{105.

[15] A. De M�edicis, P. Leroux, Generalized Stirling numbers, convolution formulae and p; q{analogues,

Canadian Journal of Mathematics, 47 (1995) 474{499.

[16] S.C. Milne, A q{analog of restricted growth functions, Dobinski's equality, and Charlier polynomials,

Trans. Amer. Math. Soc., 245 (1978) 89{118 (1978).

[17] S.C. Milne, Restricted growth functions, rank row matchings of partition lattices, and q{Stirling num-

bers, Advanced in Mathematics, 43 (1982) 173{196.

[18] S.C. Milne, Mapping of subspaces into subsets, Journal of Combinatorial Theory Series A, 33 (1982)

36{47.

[19] A. Regev, Asymptotic values for degrees associated with strips of Young diagrams, Advances in Math-

ematics, 41 (1981) 115{136.

[20] J. Riordan, An introduction to combinatorial analysis, Wiley (1958).

[21] R. Simion, F. W. Schmidt, Restricted permutations, European Journal of Combinatorics, 6 (1985)

383{406.

[22] N. Sloane, S. Plou�e, Encyclopedia of Integer Sequences, Academic Press, New York (1995).


